Transient Analysis of a V6 Exhaust Manifold using a Coupled 1D/3D Model

Problem Background

- Manifold & Catalytic Converter CFD
- Backpressure and Flow Distribution
- Steady vs Transient

Typical Manifold-Mounted Converter

Steady Assumption

- Reasonable for underbody locations
- Less applicable for close-coupled positions
- Cases-to-case versus actual flow physics

Solution Method

- Coupled 1D/3D (Wave/Star-CD) Method
- Model full system in Wave
- Insert junctions as manifold inlets & converter outlets
- Run in fully-coupled mode, time step-by-step

Steady Cases

- Comparison purposes
- 4 cases
 - case 1,2,3: instantaneous-peak-flow from one runner
 - -case 4: average flow from all runners

-objective: compare steady results to transient

Solution Parameters: Steady-State and Transient Cases

- Samm grid : 400,000 cells
- standard k-e turbulence model
- MARS discretization scheme
- inlet plane at exhaust port flange
- outlet plane downstream of covnerter outlet

Transeint 1D/3D Coupling Process

- Wave to StarCD: mass flow + all inlet info
- StarCD to Wave: pressure + all outlet info
- Variable time step controlled by Star-CD
- PISO solution algorithm
- Parallel run -- 8CPUs/400MB RAM

Steady Results: Flow Distribution

•Flow shifts to lower wall in large U-bend

•Similar results for all three ports

Steady Results: Case 2

• 'half-moon' flow pattern

•cases 1 and 3 are similar

Steady Results: Case 4

Steady Result Comparison

Case	Maldistribution	Effective Area
	Index (best=0)	Ratio (best=1)
Case 1	0.5311	0.6531
Case 2	0.5443	0.6475
Case 3	0.5920	0.6281
Case 4	0.2496	0.8003

•Similar patterns; vastly differing performance indicies

•Which case best represents transient results

Transient vs Steady: Flow Distribution

- •Flow shifts to lower wall in large U-bend
- •Similar results for all three ports

Transient vs Steady: Backpressure

Case	Pressure Drop
Case 1	53.5 kPa
Case 2	102.7 kPa
Case 3	86.3 Pa
Case 4	21.3 kPa

•Flow shifts to lower wall in large U-bend

•Similar results for all three ports

Conclusions

- For flow distribution single-port ss case
- For Pressure loss multi-port ss case
- Transient effects play large role in
 - flow distribution
 - flow restriction
 - port pressure levels
- Transient Case must be used where real flow physics are required