Implementation of UW-ERC Spray and Combustion Models to STAR-CD for Engine Simulations

S.C. Kong, C.J. Rutland, Rolf D. Reitz

Engine Research Center University of Wisconsin-Madison

2000 STAR-CD Users' Conference by Adapco

Background

- Provide alternative models to STAR for engine simulations
- Implement ERC models to STAR-CD
 - at the current stage, models include:
 - fuel atomization
 - ignition and combustion
 - soot and NOx emission models
- Minor code modifications are needed to use ERC models.

Model Formulation

- ERC models were originally developed with KIVA
- Proper interface subroutines are needed to use the ERC models

Model Implementation

• Available ERC Models

Process—Model	Current Implementation to STAR
Fuel injection—Nozzle flow cavitation model	
Fuel atomization—	
KH-RT drop breakup model	
Fuel vaporization—Multi-component	
Spray/wall interaction	
Wall film—Liquid film model	
Auto-ignition—Shell Model	
Combustion—	
Lam-turb-char-timescale model	
Soot—formation vs. oxidation	
NOx—Extended Zel'dovich	
Other Combustion Model: PDF model,	
Flamelet model, Detailed chemistry model	
Heat transfer—unsteady wall heat flux	
Crevice flow model	
Gasoline hollow cone spray model	
Gasoline flame-kernel ignition model	

Spray Atomization Model

- Breakup induced by unstable surface wave
- Different types of breakup mechanism in different regimes
- Injection Schematic:

Chemistry Models

- Shell Ignition Model
 - Generic species and generic reactions for HC fuels
 - Consider low-temperature chemistry
- Combustion Model
 - Use of laminar and turbulent characteristic timescales
 - Seven reactive species: fuel , O_2 , N_2 , CO_2 , H_2O , CO, H_2
 - Compute equilibrium concentrations for species

- Reaction rate:
$$\frac{dY_i}{dt} = -\frac{Y_i - Y_i^*}{\tau_{lam} + f\tau_{turb}}$$

(SAE 950278, SAE 960633)

Emission Models

- Soot Model
 - Competing formation and oxidation rates
 - Consider two different reactive sites on soot surface for oxidation
 - Net soot formation rate: $dM_{net} = dM_{form} dM_{oxid}$
- NOx Model
 - Extended Zeldovich mechanism
 - Account for OH radicals in the formation process

Engine Experiments

- Caterpillar 3400 Engine
 - single-cylinder; V_D=2.34 liters; CR=15.6
- Operating Conditions

	load	rpm	injection scheme	SOI (atdc)
Baseline	75%	1600	single	-9
High load	75%	1600	single	-7, -4, -1, +2, +5
High load	75%	1600	split 12-(6)-13	-7, -4, -1, +2, +5
Low load	25%	1690	single	-9, -6, -3, +0, +3
Low load	25%	1690	split 9-(8)-5.25	-9, -6, -3, +0, +3

• Same model constants were used for all cases.

Baseline: Cylinder Pressure, HRR and Emissions

- 3-D, 60-degree sector mesh
- High Load (75%), Single Injection, SOI= -9 ATDC
- Baseline case to determine model constants

Baseline: Spray and Temperature

Baseline: Temperature and Emissions

High Load, Single Injection

- SOI= -7, -4, -1, +2, +5 ATDC
- Injection duration 19.75 CAD
- Consistent model constants for all cases

High Load, Split Injection

- SOI= -7, -4, -1, +2, +5 ATDC
- Injection Scheme: 12-(6)-13

Example: SOI= +5.0 Cylinder Pressure & HRR

High Load, Split Injection

• Example: SOI= -7 atdc; Rate Shape: 12-(6)-13 deg.

-20

Low Load, Single Injection

- SOI= -9, -6, -3, +0, +3 ATDC
- Injection Duration: 9.75 CAD

Example: SOI= +3.0 Cylinder Pressure & HRR

Low Load, Split Injection

- SOI= -9, -6, -3, +0, +3 ATDC
- Injection Scheme: 9-(8)-5.25

Example: SOI= -9.0 Cylinder Pressure & HRR

Conclusions

- Reasonable results by using ERC models with STAR
- Implementations of other models are under investigation
 - Other type of combustion models: PDF, Flamelets ...
 - Spray/wall impingement, wall-film models
 - Hollow-cone spray model for GDI engines
 - GDI ignition/combustion models
 - other models

