

STAR European Conference 2011 Noordwijk, March 22- 23, 2011

The InDesA Virtual Test Facility Environment

Dr. Gerald Seider Dr. Fabiano Bet

Company Profile

INTEGRATED DESIGN ANALYSIS GmbH

Consulting- & Engineering Services

Simulation and Analysis of complex fluid flow and heat transfer systems for engineering and industrial applications

- Vehicle Thermal Management
- Engine Thermal Management
- Electronics & Battery Thermal Management
- Heat Exchanger Thermal Analysis
- Turbomachinery Flow and Thermal Analysis and more ...

1D System Analysis

GT-SUITE

InDesA GmbH • Anton-Ditt-Bogen 27 • D-80939 München • Phone +49 (89) 552 7978-10 • Fax +49 (89) 552 7978-29 • www.InDesA.de

InDesA Virtual Test Facility Center

Overview

The IndesA Virtual Test Facility Center

- **1. Background and Motivation**
- 2. Concept and Architecture
- **3. Example: Test Rig for an EGR Cooler Module**
- 4. Example: An Innovative Generator/Water Pump Unit
- **5. Combined Applications**
- **6.** Conclusion

InDesA Virtual Test Facility Center The OEM's V-Type Development Process

INTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center The OEM's V-Type Development Process

INDESA INTEGRATED DESIGN ANALYSIS

Innovative Accessory Units

like the

alternator with integrated coolant pump must be integrated on the system level

InDesA Virtual Test Facility Center Motivation

The V-Development Process ...

→ leaves hardly time for prototype testing of system components

→ requires fast adaption of components to changing module and system requirements

or simply ...

the V-Development Process requires more Virtual Testing on component level

InDesA Virtual Test Facility Center Motivation

We identified a need for ...

a highly optimized virtual test environment, that is fast, flexible and cost efficient

for performance prediction (maps) of standard automotive accessory units (fans, pumps, compressors, heat exchanger)

for functional testing & confirmation of engine and vehicle thermal systems (coolant circuit, heat exchanger packs, electronics cooling, battery packs)

Design of the InDesA virtual test facility environment

InDesA

INTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Concept

InDesA

InDesA Virtual Test Facility Center Test Rig Set-Up for an EGR Cooler Module

InDesA

NTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Test Rig Results for an EGR Cooler

Coolant

- temperatures
- pressure loss
- onset of boiling
- volume flow rates
- flow uniformity

Exhaust

- outlet temperature
- pressure loss
- force on flap
- flow leakage

Structure

- temperatures esp. valve seat
- heat transfer

Heat Transfer Map

Nusselt Correlation

Nu = f(Re,Pr)

Desa

GRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center

Innovative Coolant Pump/Generator Unit

Fluid mechanical design goals:

- verification of generator cooling
- target pump performance
- target pump efficiency
- \Rightarrow low pressure loss in waterjacket
- design of efficient high speed impeller

Challenge:

Concept must be adapted and integrated for different vehicles on system level.

 \Rightarrow Need of a fast and efficient virtual process with direct interaction of design and verification.

Generator/Pump design by IGEL AG;

Winning "Award of Innovation" granted by the "Würzburger Automobil Gipfel 2010"

InDesA

NTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center

Results for Coolant Pump/Generator Concept

System Pressure Loss optional from

GT-SUITE coolant system model

Coolant Pump

- volume flow rate for different impeller speeds
- pressure rise of pump
- hydraulic efficiency of pump
- onset of cavitation

Generator Waterjacket

- pressure loss of waterjacket
- heat transfer coefficients

Pump Performance Map (affinity laws)

InDesA

INTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Combination for Cooling Package

3D CFD model or derived performance map.

porosity parameters for cooling air side and Nu-Correlation derived from CFD results.

Simplified underhood model for the investigation of cooling module performance.

InDesA

INTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Combination for Coolant System

Coolant Systems

3D CFD model for coolant system

→Analysis of flow rates in entire coolant system for different pump speeds and thermostat /valve settings.

Investigation of system filling procedure and de-gas behavior

INTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Conclusion I

The IndesA Virtual Test Facility Center

... an Efficient and Environment-Friendly Concept.

standardized and customized procedures for virtual test rig setup and post-processing.

over 100 processors linked with a high performance communication and storage system tuned for optimal performance of StarCCM+

decent energy consumption only ventilation; no air conditioning of compute cluster; no energy needed to feed heat exchangers for performance tests.

InDesA

RATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Conclusion II

The IndesA Virtual Test Facility Center

... High Fidelity, Repeatability and Comparability

High resolution CFD models ensure detailed capturing of geometry

(allows for capturing of flow leakage in pumps, hinges, etc.)

Use of advanced StarCCM+ physical model library

(radiation, two-phase for boiling, kinematic module for pressure actuated flaps, etc.)

CFD model of test rig and test object are packed and stored with all results for reuse.

(allows to run additional operating points at request anytime; also used for documentation of test cases)

Comparability of results for different prototype stages

(same boundary conditions, same solution method, same mesh resolution)

Indesa

GRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center Conclusion III

The IndesA Virtual Test Facility Center

... 3D CFD/CHT and More!

CFD/CHT analysis can be extended to stress /strain analysis (indication for possible fatigue problems)

Sophisticated boundary conditions can be added by 1D system analysis

(GT-POWER engine model, GT-SUITE coolant circuit, etc.)

Extended POST-Processing and results analysis

(Derivation of general Nu-Correlation for heat exchangers)

Combination of test rig models can be used to investigate larger systems

(underhood flow, coolant systems)

InDesA

INTEGRATED DESIGN ANALYSIS

InDesA Virtual Test Facility Center

www.InDesA.de

Aspire for Engineering Success.

Thank you for your attention.