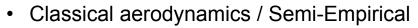
Missile External Aerodynamics Using Star-CCM+

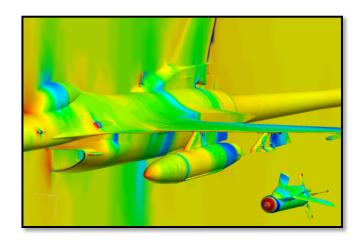
Star European Conference – 03/22-23/2011

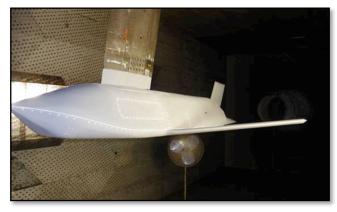
Deryl Snyder, Ph.D. Engineering Support Group Lead Aerodynamics Center of Excellence

Public Release: ORL201102002

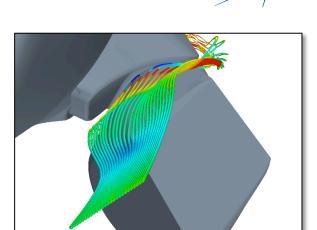

StarCCM_StarEurope_2011 4/6/11 1

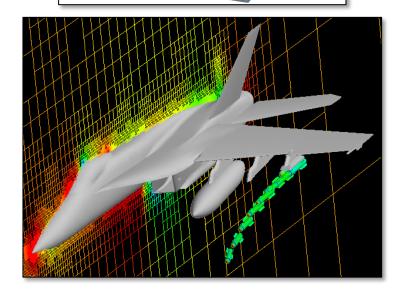
Overview




- How CFD (and, in particular, Star-CCM+) fits into the aerodynamics analysis process at Lockheed Martin Missiles and Fire Control – Orlando.
- Aerodynamic Performance Prediction Case
 - Solvers
 - Setup
 - Solution/Post-Processing Automation
 - Performance Results
- Mesh Type and Turbulence Model Selection
- Convergence Acceleration for Compressible Flows
- Conclusion

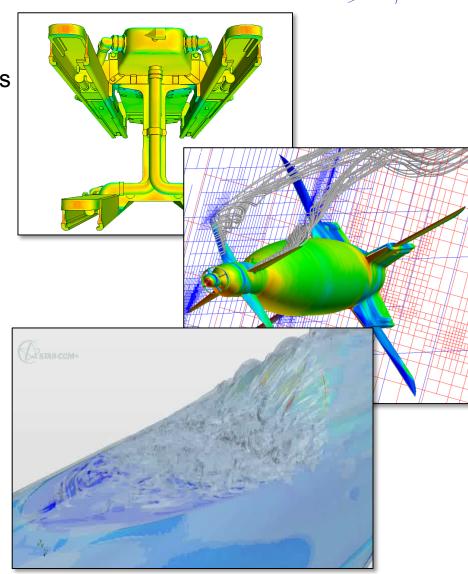
Role of CFD in Aerodynamic Analyses


- Bound the problem
- Determine feasibility
- Perform initial trades
- CFD
 - Higher fidelity performance estimation
 - Down-select to small set of geometries for WT testing
 - Determine expected WT loads
 - Identify possible trouble areas
 - Provide detailed flow information
- Wind tunnel tests
 - Final down-select
 - Final aerodynamic database



Typical CFD Applications

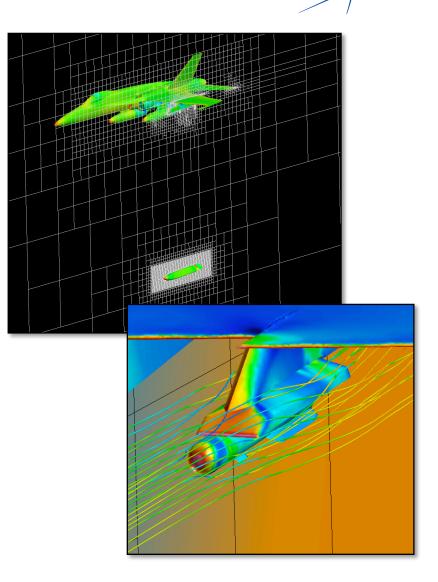
- Freestream aerodynamics
 - Estimate free-flight forces and moments
 - Generate databases for simulations
 - Identify component loading
 - Determine distributed loading for structural analysis
 - Quantify control effectiveness
- Flowfield investigations
 - Component interaction
 - Shock formation
 - Vortex interactions
 - Thermal analyses (CHT)
 - Aero-Optics
- Separation analyses
 - Estimate interference effects
 - 'Grid' approach
 - 'CFD-in-the-loop' 6-DOF simulations



Aerodynamic Demands/Trends

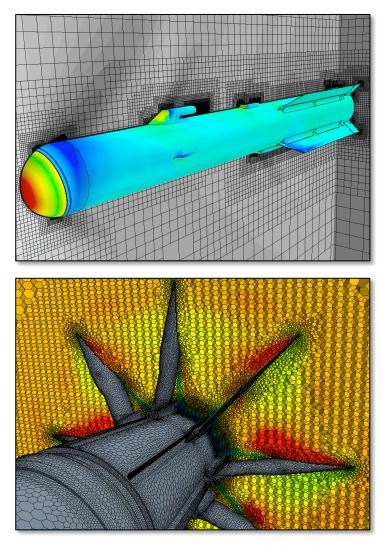
A

- Increasingly complex geometries
 - Difficult to apply classical analyses
- Increasingly complex flow fields
 - Separated flows
 - Plume interactions
 - High Mach numbers
- Increasingly difficult questions
 - Vortex interactions
 - Shock interactions
 - Optics through turbulence
 - Multiple bodies

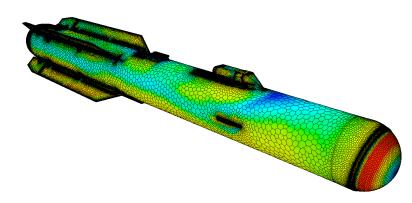

Joint Common Missile Test Case

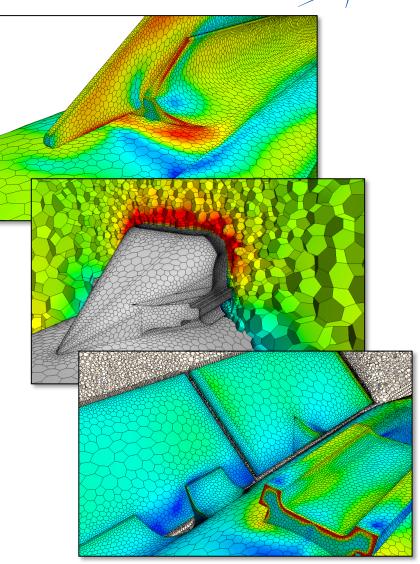
- Joint Common Missile (JCM)
 - Freestream lift, drag, and pitching moment prediction
 - Evaluated against wind tunnel data
 - Mach: 0.5, 0.85, 1.3
 - Angle of Attack: -5 to +25 degrees
 - Sideslip Angle: 0

Solvers – Splitflow (LM)


- Advantages
 - Fast, simple grid generation
 - Complex geometries
 - Adaptive grid refinement
 - Fast (~4 hours on 4 cores)
 - In-house (unlimited usage)
- Disadvantages
 - Cartesian grid
 - Limited ability to handle boundary layers
 - External aerodynamics only
 - Marginal overall accuracy in terms of drag and pitching moment

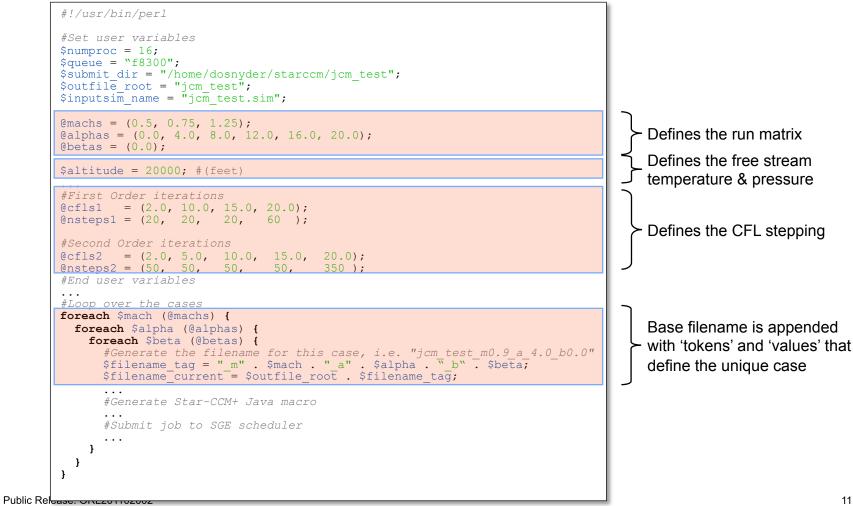
Solvers – Star-CCM+



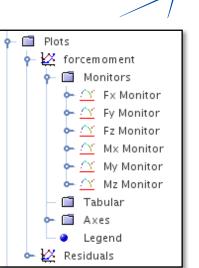

- Advantages
 - Hybrid structured/unstructured body-fitted grids
 - Complex geometries
 - Reasonable grid generation times
 - Good geometry/boundary layer definition.
 - General purpose
 - Improved accuracy (esp. drag, pitching moment)
- Disadvantages
 - No automated adaptive grid refinement
 - Computationally more expensive (~10 hours on 16 cores)
 - Commercial...cost/limited seats

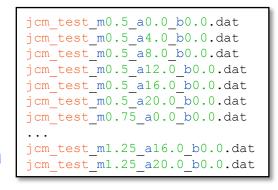
Grid / Computational Domain

- CAD geometry imported in STEP format
 - Surface repair tools used to clean up geometry
 - Many complex protrusions, mounts, holes, steps are retained
- Polyhedral volume mesh
 - Volume sources used to refine mesh in critical areas
 - 5 rows of prism layers near the walls
 - Approximately 4.2 million cells overall
 - Fine mesh with 19.0 million cells used to assess grid independence


Solver Settings

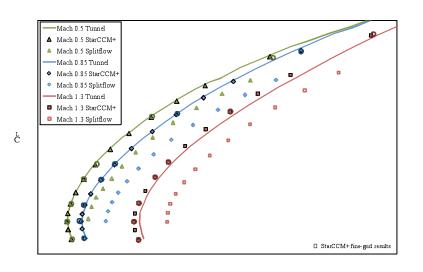
- Density-Based Coupled Solver
 - Steady-state RANS equations
 - SST (Menter) K-w Turbulence Model
 - Wall functions used near the solid boundaries
 - 2nd-order spatial discretization
- Freestream boundary condition applied ~250 diameters from the body
- Uniform flowfield initialization based on freestream conditions
- CPU Time
 - 4 Intel Xeon E5630 (Quad-Core) 3.2GHz CPUs (16 Cores)
 - Approximately 10 hrs per condition


Batch Submission

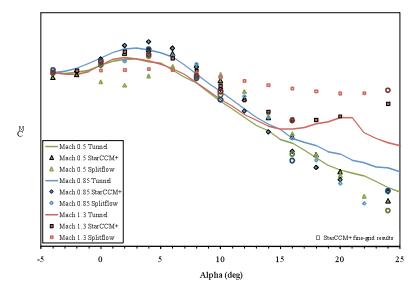

- Jobs are batch-submitted through SGE scheduler
- A Perl script is used as a front-end to generate and submit runs

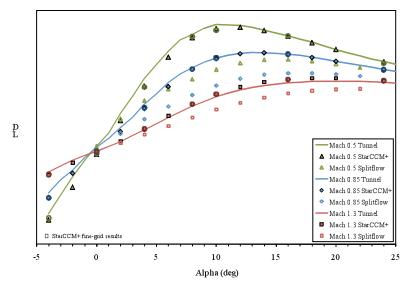
Data Reduction

- Force and moment reports / monitors are created and compiled into a single plot object.
 - May include forces / moments for individual components
- Upon completion of the run, the Java macro exports the plot values to a data file.
 - Unique file name, including 'tokens' and 'values'
 - May include wing sweep angles, control surface deflections, etc.
- To reduce the data, a script is executed that
 - Loops through the output files
 - Determines the flight conditions
 - Averages the last *n* iterations in the file
 - Generates a single tabular data file



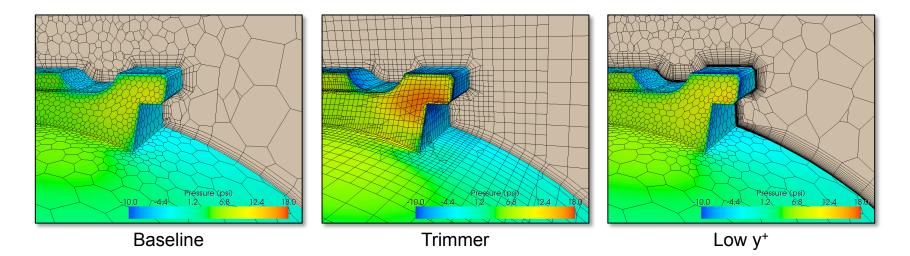
Mach	alpha (deg)	beta (deg)	Fx (lbf)	Fy (lbf)	Fz (lbf)	Mx (lbf-ft)	
0.500000E+00	0.00000E+00	0.00000E+00	0.000000E+00	0.000000E+00	0.00000E+00	0.00000E+00	
0.500000E+00	0.400000E+01	0.00000E+00	0.000000E+00	0.000000E+00	0.00000E+00	0.00000E+00	
0.500000E+00	0.800000E+01	0.00000E+00	0.000000E+00	0.00000E+00	0.00000E+00	0.00000E+00	
	•••			•••	•••	•••	


Public Release: ORL201102002


Aerodynamic Forces/Moments

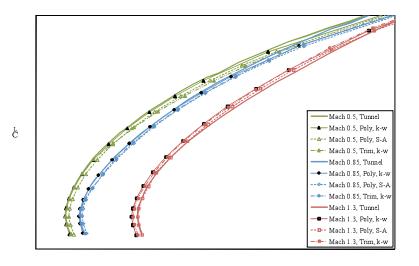
 \mathbf{C}_{D}

- Aerodynamic forces and moments are predicted well using Star-CCM+
 - Lift / Drag within ~3%
 - Trim angle within $\sim 1^{\circ}$
- Star-CCM+ results are significantly improved over Splitflow solver

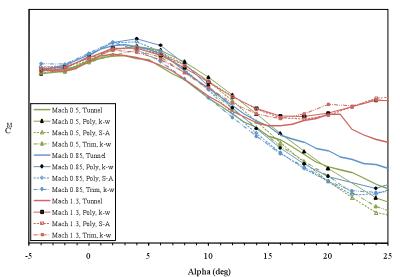

Public Release: ORL201102002

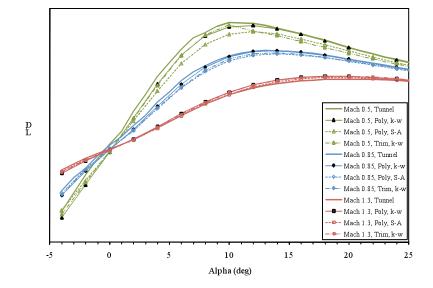
Mesh and Turbulence Model Study

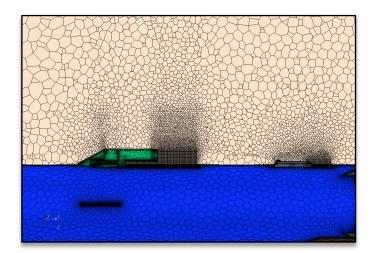
	Cell Type	Cells	Faces	Prism Layers	Wall y⁺	Turb. Model
Baseline	Poly	4.2M	23.9M	5	~75	SST K-w
Trimmer	Trim	8.8M	26.5M	5	~75	SST K-w
Low y+	Poly	8.6M	40.4M	25	~1	S-A

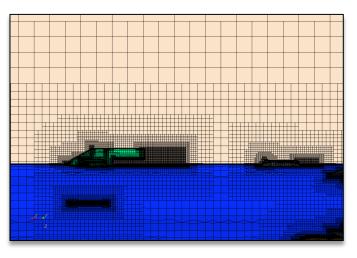

* All three meshes utilize the same surface sizing parameters

* Baseline and Trimmer mesh have nominally the same number of cell faces




Aerodynamic Forces/Moments

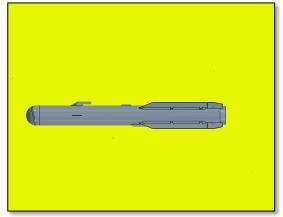


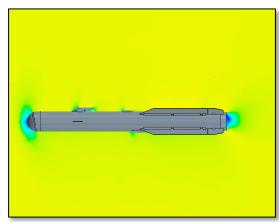


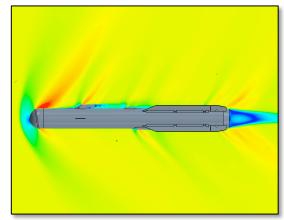
- **Turbulence model**
 - SST K-w model w/wall functions provides best results for subsonic conditions.
 - S-A model integrated to the wall provides best results for supersonic conditions.
- Mesh type •
 - Trimmer / Polyhedral meshes produce similar results at low angles of attack.
 - Polyhedral mesh produces better results at higher angles of attack

Mesh Discussion

- Mesh behavior may be due to:
 - Polyhedral mesh has more random orientation of faces, yielding similar numerical dissipation at all angles of attack.
 - Polyhedral mesh tends to place many cells radially away from the body, which may help at higher angles of attack.



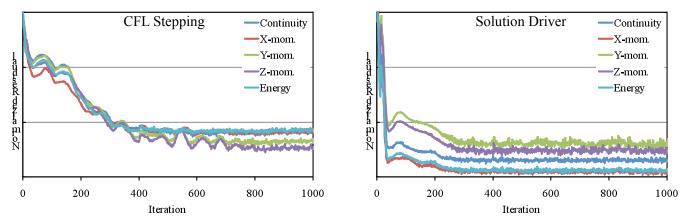

Solution Acceleration – Initialization


- Uniform Initialization
 - Domain is uniformly initialized to the freestream conditions
 - A linear reduction to zero-velocity is applied near the walls based on a userspecified wall distance.
- Grid Sequencing Initialization
 - Available in Star-CCM+ V5.04
 - Provides a better initial condition by solving for an approximate inviscid solution via a series of coarsened meshes.
 - Takes ~1-2 minutes for the baseline JCM mesh
 - Allows more aggressive CFLs early in the solution

Uniform Initialization

Grid Sequencing Initialization

Final RANS Solution



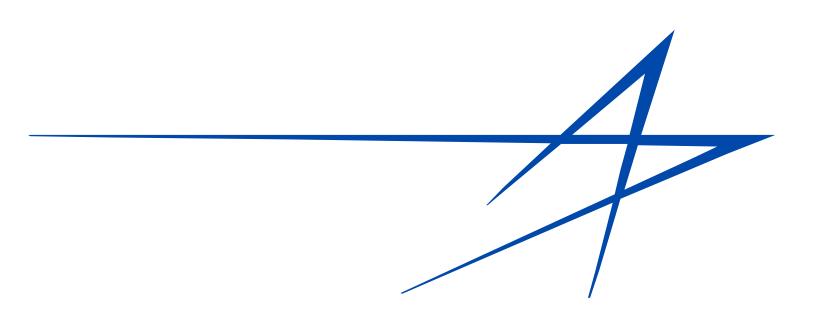
Solution Acceleration – CFL Control

- CFL Stepping (Our Legacy Approach)
 - User-defined via Java

CFL	2.0	3.0	6.0	9.0	12.0
Iterations	150	250	250	200	650

- Lower Mach numbers allow higher CFLs
 - Divide the number in the CFL stepping by the Mach number
 - Works well for Mach 0.5-2.5
- Solution Driver
 - Available in V5.06
 - Combines a CFL ramp with corrections control/limiting
 - Provides a straight-forward and robust convergence acceleration

Solution Acceleration Results Mach 0.85



- GSI significantly improves convergence rate for CFL Stepping.
- Solution Driver provides best results
 - Oscillations about converged value are reduced
 - Uniform Initialization provides slightly faster convergence

Conclusion

- Accuracy of results
 - Star-CCM+ solutions provide a significant improvement over our in-house code at predicting external aerodynamic forces and moments.
 - Both Star-CCM+ and Splitflow are currently integrated into our analysis procedures
 - Splitflow: Preliminary analyses/trades, large run matrices
 - Star-CCM+: Refined analyses, drag-critical, internal/external flows, conjugate heat transfer, LES, etc.
- Mesh/Solver options
 - For our typical application at transonic/supersonic Mach numbers
 - Polyhedral meshes with ~5 prism layers and 4M cells
 - SST k-w turbulence model with wall functions
 - Grid Sequencing Initialization combined with Solution Driver CFL control provides a robust method to achieve converged solutions at a computational savings of 20-50% over manual CFL ramping.
- Automation of solving/post-processing using Perl and Java reduces user interaction to only pre-processing stages, reduces user-error, and increases throughput.

