Applications of modeFRONTIER in Stochastic Model
Extrapolation and Robustness Design

Zhenfei Zhan'", Yan Fu?, Ren-Jye Yang?

!Chongqing University, Chongqing, 400040, China (zhenfeizhan@cqu.edu.cn )
2Ford Motor Company, Dearborn, MI48124, USA

INTRODUCTION

In vehicle design, response surface model (RSM) is commonly used as a surrogate of the
high fidelity Finite Element (FE) model to reduce the computational time and improve
the efficiency of design process. However, RSM introduces additional sources of
uncertainty, such as model bias, which largely affect the reliability and robustness of the
prediction results. The bias of RSM need to be addressed before the model is ready for
extrapolation and design optimization. This paper employed the commercial available
optimization platform modeFRONTIER to investigate the Bayesian inference based
model extrapolation method which is previously proposed by the authors, and provides a
systematic and integrated stochastic bias corrected model extrapolation and robustness
design process under uncertainty. A real world vehicle design example is used to
demonstrate the validity of the proposed method.
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INTRODUCTION

Computational Aided Engineering (CAE) becomes a vital tool in various industries. In
automotive industry, Finite Element (FE) models are widely used in vehicle design.
Model validation [1-6] is the process of comparing CAE model outputs with test
measurements in order to assess the validity and predictive capabilities of the CAE model
for its intended usage. Successful implementation of model validation will increase the
chance of virtual testing and may lead to significant reduction in prototype building and
testing of vehicle designs.

Various statistical inference techniques have been developed [12]. However, these
methods did not fully address the needs for design interpolation and extrapolation under
uncertainty. With these considerations, three interpolation and extrapolation methods are
investigated by Zhan et al.[20]. They are Bayesian inference-based method [21],
Gaussian process modeling (GPM)-based method [22], and Copula-based method [23].
Three stochastic validation metrics, such as area metric, reliability-based metric, and
Bayesian confidence metric, are used to evaluate the predictive capability of these three
methods.. It is found that all three methods are capable of providing good predictions for
the purpose of interpolation and extrapolation. Among the three methods, the Bayesian

Page 1 of 12



inference-based method is more straightforward, effective, has less tuning parameters,
and is easy for engineering implementation. The Gaussian process method shows
superiority in capturing the mean of the responses when less training data are available.
However, it might be difficult to determine the hyper-parameters of the Gaussian process
when solving high-dimensional problems. In addition, the drastically changing prediction
intervals might have some potential negative effects on identification of a better design.
Copula-based method is able to capture general statistical relationships between model
prediction and model bias, and between design variables and model bias. This method
may be good to handle large bias noisy situation. However, the implementation process is
complex.

Reliability-based design optimization (RBDO) is a frequently used approach in design
under uncertainty aiming at obtaining a design solution that is most reliable under the
variations of design variables. Beyond deterministic design optimization, which often
drives the optimal design to the limit of design constraints and leaves little or no latitude
for uncertainty, RBDO considers the uncertainty of controllable or uncontrollable
variables associated with an existing CAE model. However, most of the traditional
RBDO formulations do not account for the uncertainty from the CAE model; a CAE
model is believed to be accurate enough for reliability assessment before it is
implemented in RBDO process. RBDO fails if the model is not accurate and is affected
with large model uncertainty. Therefore, model bias correction is critical before
implementing RBDO.

The rest of the paper is organized as follows: The Bayesian inference based stochastic
interpolation and extrapolation method is briefly introduced, Next, RBDO formulation is
introduced and a vehicle frontal impact case study are used to investigate the capability of
the proposed approach, and the FE simulations of the robust design are used to confirm
the results. Finally, some discussions and summary are given in the end.

STOCHASTIC INTERPOLATION & EXTRAPOLATION METHODS

Extrapolation

Validation domain

Application
domain

Interpo lation

Model interpolation and extrapolation
In numerical analysis, interpolation is a method of constructing new data points within
the range of a discrete set of known data points. Extrapolation is a process in which
information is gained by obtaining function from the known data, and then estimating
the value of a new data point which is beyond the range of given data by using the
extended (extrapolated) function as the source. Typically, the quality of a particular
extrapolation method is limited by the assumptions about the function made by the
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method. For example, if a method assumes the data are smooth, then a non-smooth
function will be poorly extrapolated. Even for proper assumptions about the function, the
extrapolation can diverge strongly from the function. In general, CAE models are not
developed solely for single design point analysis. It is required that the CAE model
possesses dependable predictive capability under different design scenarios within a
predefined design space. Additionally, CAE models can have a large amount of inputs. It
is desirable that a CAE model is valid in a wide range of design variables (for design
space exploration). A CAE model may have to be validated for the entire range of its
inputs before it can be claimed as a "globally validated model", which will always yield
designs that will perform as predicted. This requires a vast amount of resources to
conduct multiple tests at each point of a sufficiently large data set in an extremely high-
dimensional space defined by the model inputs. However, due to limited resources and
time constraints, the model validation activities are usually conducted in a well-controlled
environment where only a limited number of physical tests are available
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Figure 1 —Flowchart of Bayesian based Model extrapolation
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Zhan et al [21] proposed a Bayesian inference-based model interpolation and
extrapolation method. This method utilizes the advantages of Bayesian inference and
response surface model (RSM). The process starts with design of experiment (DOE)
matrix for validation in the design space, followed by performing repeated physical tests
and CAE simulations. The difference between test and CAE data are then calculated as
evidence for the Bayesian updating of hyper-parameters of the bias distribution. After
obtaining the prior information, the posterior distributions of prediction bias hyper-
parameters are calculated.

Two RSMs are built for the mean and standard deviation of the prediction bias. After
obtaining the CAE simulation result, the prediction intervals (PIs) of the output at new
designs are calculated. Confirmation tests at new designs are used to validate the
prediction results. If the test results of a new design are within the corresponding Pls, the
prediction by interpolation or extrapolation is considered successful. Based on the result,
the decision maker then decides to accept or reject the prediction result. If accepted, it is
then passed to the downstream engineers for design optimization or robust design. On the
other hand, if the prediction is rejected, additional DOE will be added and repeat the
process until good quality prediction is achieved [21].

» Chest G bias mean 7, (x.) Crash Distance bias mean z.(x.)

RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO)

Reliability-based design optimization (RBDO) is a frequently used approach in design
under uncertainty aiming at obtaining a design solution that is most reliable under the
variations of design variables. Beyond deterministic design optimization, which often
drives the optimal design to the limit of design constraints and leaves little or no latitude
for uncertainty, RBDO considers the uncertainty of controllable or uncontrollable
variables associated with an existing CAE model.

However, most of the traditional RBDO formulations do not account for the uncertainty
from the CAE model; a CAE model is believed to be accurate enough for reliability
assessment before it is implemented in RBDO process.

RBDO fails if the model is not accurate and is affected with large model uncertainty.
Therefore, model bias correction is critical before implementing RBDO.
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Figure 1 RBDO illustration

Minimize E[f,(X)]
subject to Pr{f;(X) =0} = a,%,i = 1,...,k

X is a random vector that follows a known distribution, such as normal distribution, E[¢]
is the expectation of a function, f;(X) ,i = 1,..., k is a set of functional assessment of
interest, and «;%,, i=1,....k, is the reliability level. Most of the existing RBDO works
only consider the uncertainty associated with model input variables where f;(X) is
deterministic by itself. On the other hand, if model uncertainty is considered and model
bias correction is conducted beforehand, then f;(X), i=1,...,k, would be stochastic
functions with which each single design X would provide a prediction distribution instead
of a single prediction value. In this case, a modified approach is required for reliability
assessment.

FRONTAL IMPACT CASE

Three stochastic interpolation and extrapolation methods are also applied to a vehicle
design example. A Ford Taurus model from National Crash Analysis Center (NCAC)
was used for this study [30]. Figure 2 shows the physical test and CAE model for the full
frontal impact. The simulation speed is 56.6 km/h against a rigid wall. The comparison of
test and CAE results show that CAE results are in a reasonable agreement with the
physical test. Eight members of the front-end structure are chosen as the deign variables,
and two performance measures in a full frontal impact, chest G and crush distance are
used as the performance measures. The detailed description of this case can be referred to
Shi et al [31] and Zhan et al [22].
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(b)

Figure 2 Comparison of structure deformation between: (a) test, (b) CAE model

In this benchmark problem, 80 uniform DOEs are generated in the design space
(validation domain). Three repeated tests and a CAE simulation are conducted at each
design configuration. 65 out of the original 80 DOE samples are used to construct the

RSMs. The remaining 15 out of original 80 DOE samples are used as interpolation
validation designs to investigate three stochastic interpolation and extrapolation methods.
As shown in Zhan [21], the Bayesian inference-based method is more straightforward,
effective, has less tuning parameters, and is easy for engineering implementation.\
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The Bayesian inference corrected RSM model is then used for the RBDO. The design
objective is to minimize the weight through gauge optimization while satisfying the
design requirements on Chest G and Crush Distance. The weight is related to the gauges
of the front-end structures. Two approaches are tested for this design optimization
problem: one is the traditional RBDO using the original low-fidelity RSM for Chest G
and Crush Distance, considering only the variability of design variables. The other is
RBDO using the Bayesian inference bias-corrected model, considering both model
uncertainty and the variability of design variables. The two approaches lead to two
different solutions, as shown in Table 2. The traditional RBDO provides a design with a
lighter weight.

X1 X2 X3 X4 Xs X6 X7 X3 Weight

Baseline | 1.90 | 191 |2.51 |240 |[255 |255 |225 |[1.50 |51.97

RBDO
w/o bias

1.715 | 1.212 | 1.614 | 3.966 | 1.560 | 1.595 | 1.559 | 2.988 | 44.08

The two approaches lead to two different solutions, as shown in Table. The traditional
RBDO provides a design with a lighter weight. To validate whether or not the solutions
truly meet the reliability targets, 10 random designs are generated with means given by
the two solutions (10 for each), and then the high-fidelity FE simulations are run for those
20 designs, providing their corresponding values of Chest G and Crush Distance.
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Figure shows the FE simulation results for the 10 designs generated from the traditional
RBDO solution. Note that the chest G and crush distance results have been normalized.
Apparently this is a failed solution; 1 out of 10 designs fails the Chest G constraint while
all 10 designs fail the Crush Distance constraint. The probability distributions of Chest G
and Crush Distance given by MCS are way off the distributions from the 10 FE
simulations, and the reliabilities of the two constraints are neither close to 99%.
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Figure 3 traditional RBDO

On the other hand, Figure shows the FE simulation results for the 10 designs generated
from the RBDO solution considering model uncertainty.

X1 X2 X3 X4 Xs X6 X7 X3 Weight

Baseline | 1.90 | 1.91 [251 |240 |2.55 [255 |225 |150 |51.97

RBDO
w/o bias

RBDO | 1918 |2.270 | 1.600 | 1.500 | 1.601 | 2.379 | 1.700 | 1.497 | 46.21

1.715 | 1.212 | 1.614 | 3.966 | 1.560 | 1.595 | 1.559 | 2.988 | 44.08

All 10 designs satisfy the design targets, confirming the feasibility of the solution.
Also, the aggregate probability distributions (from Equation (42)) of Chest G and Crush
Distance are also plotted, which are close to the distributions demonstrated from the 10
FE simulations; but the variance of the aggregate distribution is larger than the variance
of the FE simulations, due to the model uncertainty we consider.
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Figure 4 Bayesian inference bias corrected RBDO
This case proves the need for both model bias correction and RBDO considering model
uncertainty. The fact that traditional RBDO with a low fidelity CAE model leads to a
failed design reminds one to correct the model beforehand and to focus on providing a
solution that is reliable not only to the variability of design variables but also to the
unknown reality of the true physics.

CONCLUSIONS

This paper proposed to use the Bayesian inference model interpolation and extrapolation
method for engineering design. A stochastic bias corrected model extrapolation and
robustness design considering model uncertainty and parametric uncertainty is introduced.
The Bayesian inference method is first conducted to correct the bias of RSM model and
to quantify the model uncertainty. An improved RBDO formulation is then presented to
ensure the reliability of optimal design. The proposed approach is demonstrated through
a vehicle safety design problem for weight reduction while satisfying safety constraints
on Chest G and Crush Distance. Interpolated and extrapolated settings of model inputs
validate the proposed model bias correction process. By comparing with the solution
from traditional RBDO, the improved RBDO reached a much more reliable solution
while achieving the weight reduction.
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