History & Future Vision of CAE Utilization Contents

- 1. My work experience and current
- 2. History of CAE utilization in engine development process
- 3. Present situation and problems
- 4. Future vision of CAE utilization

2015/11/23

Your True Partner for CAE&CFD | CSC \$2015

History & Future Vision of CAE Utilization

Contents

- 1. My work experience and current
- 2. History of CAE utilization in engine development process
- 3. Present situation and problems
- 4. Future vision of CAE utilization

My work experience and current

Toyota Motor Corporation (1982-2015)

- 1. Engineering IT division 3 years
- 2. Engine engineering division 30 years
 - Project(CAE) general manager
 - Main responsibility was to reduce engine development time and cost by CAE

Director of Academic Society (2007-)

- Japan Society for Computational Engineering and Science
- 2. Robust Quality Engineering Society

CEO of SAWADA R&D Center (2015-)

- Engineering consulting and mediation

2015/10/22

My work experience and current

Toyota Motor Corporation (1982-2015)

- 1. Engineering IT division 3 years
- 2. Engine engineering division 30 years
 - Project(CAE) general manager
 - Main responsibility was to reduce engine development time and cost by CAE

Director of Academic Society (2007-)

- Japan Society for Computational Engineering and Science
- 2. Robust Quality Engineering Society

CEO of SAWADA R&D Center (2015-)

- Engineering consulting and mediation

2015/10/22 4

History & Future Vision of CAE Utilization Contents

- 1. My work experience and current
- 2. History of CAE utilization in engine development process
- 3. Current situation and challenge
- 4. Future vision of CAE utilization

2015/11/23

5

Vehicle & Engine development process

History of CAE utilization

2015/11/23

Generation: CAE

■ Utilization for component design

Drafting

FEM modeling: a couple of days

- Mesh scale ~1,000 nodes
- Static, Linear Analysis
- Machine Super Computer EWS for Pre, Post

2nd Generation :CAE

■ CAE Utilization for trouble shooting

CAD Wire frame model

FEM modeling: 3 months

- Mesh scale~10,000 nodes
- Static, Linear Analysis
- Machine
 Super Computer
 EWS for Pre, Post

2015/11/23

9

3rd Generation :CAE

■ In-Process CAE: CAE utilization before prototype

3D-Solid model

FEM modeling: 1 week

- Mesh scale~3,000,000 nodes
- Non-linear, Dynamic
- Machine
 Super EWS
 Windows EWS
 for Pre, Post

From CAE utilization for trouble shooting to in-process CAE

Challenge in 3rd Generation

How to realize in-process CAE

- 1. Reduction of CAE period of time
- 2. CAE accuracy improvement
- 3. Increment of CAE item

Reduction of CAE period of time

Challenge in 3rd Generation

Reduction of CAE period of time

CAE accuracy improvement (Validation)

Challenge in 3rd Generation

15

CAE accuracy improvement (Verification)

CAE accuracy improvement (Mesh control)

2015/11/23 17

Challenge in 3rd Generation Increment of CAE item

Challenge in 3rd Generation Increment of CAE item

Challenge in 3rd Generation Increment of CAE item(CAE Menu example)

3: Absolute, 2: Relative(%), 1: Tendency

Area	Component	No.	Evaluation item	CAE Output	CAE	
	Intake, Exhaust System (1D)		Torque Volumetric Efficiency Cylinder Pressure Flow Rate	Max Torque, Max Power, air flow or Intake rate	2	
	Intake Manifold	A02	Intake Manifold Flow Rate Intake manifold + port flow rate	Mass flow rate; Flow Coefficient	1	
Performance (A)	Intake Port	A03	Flow Coefficient Tumble Ratio	Flow Coefficient Tumble ratio Impeller RPM	1	
	Intake System Parts	A04	Pressure Loss	Pressure loss	1	
	Exhaust System	A05	Pressure Loss	Pressure loss	3	
Calibration (B)	EGR	B01	EGR Cylinder Distribution	EGR variation b/w cylinders	2	
(6)				Throttle catching ratio		

Challenge in 3rd Generation Example of CAE level 3: Cylinder Head Durability

2015/11/23

Challenge in 3rd Generation Example of CAE level 2: Mount tip vibration

Mount tip Vibration level (1/3octave tracking analysis)

Challenge in 3rd Generation Example of CAE level 1: Intake port CFD

Challenge in 3rd Generation Increment of CAE item and rate of CAE utilization

Reduction of cost of trial production by realization of "In-Process" CAE

2015/11/23

History & Future Vision of CAE Utilization

Contents

- 1. My work experience and current
- 2. History of CAE utilization in engine development process
- 3. Current situation and challenge
- 4. Future vision of CAE utilization

Current situation and challenge Process and problems

2015/11/23

Current situation and challenge The reason of re-do

- 1. Performance target setting in virtual process is not reasonable.
- There are few or not good models in virtual process for reasonable performance target setting.

Current situation and challenge The reason of re-do

Process	O: Objective function D: Design parameter	Model(function) <0 = f(D)>
Customer requirement	O: Customer rating D: Vehicle performance	×
Vehicle Planning	O: Vehicle performance D: System performance	×
System Optimization	O: System performance D: Component performance	Δ
Component Optimization	O: Component performance D: Component design parameter	O

2015/11/23

Current situation and challenge

Model definition

Model = Relational expression, $F_i = f(P_i)$

Current situation and challenge Example of functional break-down

	Customer	→ Vehicle ■	System -	Components
Fuel Economy	Fuel consumption	Vehicle fuel consumption (Driving mode)	Engine fuel consumption (BSFC)	Friction Thermal efficiency
Fun to	Drivability, Accelerator response	Acceleration	Engine torque	Combustion pressure
drive	Sound quality Low noise	Sound pressure Vehicle vibration	Engine vibration (force)	Combustion Pressure Component vibration

The physical items on the list are function (performance) and these have target.

2015/11/23

Current situation and challenge Functional break-down and design parameter

	KT.	<u> </u>
Process	Function (performance) ex.	Design parameter
Vehicle	- Acceleration	Engine torqueVehicle mass property
System (Engine)	-Engine torque	 Combustion pressure Engine mass property Engine intake and exhaust system property (1D)
Component	-Combustion pressure	- Combustion chamber, intake and exhaust design parameter (3D)

Ex. Optimization of system(engine): Combustion pressure that is objective function in optimization of component is design parameter This means previous process (system optimization) define the target of next process

Current situation and challenge Classification of models

Classification Definition		CAE tool example
Physical	Mathematical formula based on physical lawDifferent from governing equation which need digitizing	- AMESim - Dymola - SimulationX - MappleSim - Matlab/Simulink
Statistical	 Mathematical formula or table based on measurement Multiple linear regression Combination with physical model 	- Included in physical model tools
1D Digitizing	Computational method for solving governing equationDynamic equation, Navier-StokesDiscrete dimension is 1D	- GT Suite - AVL Boost, Cruise
3D Digitizing	- Same as above - Discrete dimension is 1D	ABAQUS, NASTRAN - Converge, STAR, Fluent iconCFD

2015/11/23

Current situation and challenge Model examples (Water Jacket)

Engine W/J 3D Model

form (3D dimension)
Boundary conditions
(inlet, outlet flow rate ← pump).
The governing equations (Navier-Stokes)
→ Pressure drop, velocity, heat transfer coefficient (water - metal)

Equivalent 1D Model

Form (1D dimension, diameter, lengths, volume)
Characteristic shape (pressure drop ← bent, orifice)
Boundary conditions (inlet, outlet flow rate ← pump).
The governing equations (Navier-Stokes)
→ Pressure drop, velocity,
heat transfer coefficient (water - metal)

Current situation and challenge Model examples (Water Jacket)

 $dh2 = hmix2 \times A2 \times (Tf - T2)$ $dh4 = hmix4 \times A4 \times (Tf - T4)$ $hmix = \sqrt[3]{hconv^3 + hfree^3}$

 $hfree = \frac{Nu(Gr, Pr) \times \lambda}{2}$

1D Model

Form (1D dimension, diameter, lengths, volume)
Characteristic shape (pressure drop ← bent, orifice)
Boundary conditions (inlet, outlet flow rate ← pump).
The governing equations (Navier-Stokes)
→ Pressure drop, velocity,
heat transfer coefficient (water - metal)

Physical Model

Equation of water × metal heat transfer

ff	friction factor
rec	critical Reynolds number
numin	constant value for laminar Nusselt
nuf	expression for free convection Nusselt number = f(gr,pr)
nul	expression for laminar Nusselt number = f(re,pr,mu,mus,ff)
nut	expression for turbulent Nusselt number = f(re,pr,mu,mus,ff)

Characteristic shape × physics (Nusselt number)

Boundary conditions (inlet, outlet flow rate ← pump). The governing equations (Navier-Stokes) →Average heat transfer coefficient (water - metal)

2015/11/23

Current situation and challenge Process and Model

Process	Model for optimization	Reason	
Vehicle	Physical and Statistical 1D-digitiing	 Detail design optimization is done in later process (component). Design parameter is value of trait and model for optimization is physical and statistical or partially 1D. 	
System (Engine)	1D-digitizing	 Detail design optimization is done in later process (component). Design parameter is 1D and model for optimization is 1D-digitizing. 	
Component	3D-digitizing	Design parameter is 3D.1D design parameters optimized in previous process are constraint in this process.	

Current situation and challenge Modeling and Development process(MBD)

Current situation and challenge MOR & MBD example 改良ケース **Driver input** Driver Intake, exhaust Vehicle output Response time Combustion Acceleration Full Vehicle (0D+1D) chamber Time Suspension Transmission Transfer Transfer Time time reduction Acceleration Engine mount target brake-down Intake, exhaust Combustion Measurement and combustion(1D) chamber (3D) reduction validation target brake-down 2015/11/23 38

Current situation and challenge MOR & MBD example (Fuel consumption, GT/Suite application)

Current situation and challenge MOR example

Current situation and challenge Modeling example

Current situation and challenge Modeling(engine air & combustion)

Same Physical Model Based

 $\frac{dQ}{dt} \propto ST \approx a \cdot u'^a P^b$

dQ/dt: Heat release ratio ST: Turbulence speed

u': Turbulence intensity

P: Cylinder pressure

a, b: parameter (it depends physical model)

Current situation and challenge Modeling (Heat transfer)

<To be>

<Current>

3D-CFD

OR

Experimental equation (Woschini)

$$\frac{dQ_{loss}}{dt} = h \cdot Aw_g \cdot (T_g - Tw_g)$$

Where : h =experimental equation

2015/11/23 43

Current situation and challenge Modeling (Cooling circuit)

MOR(Model Order Reduction) 3D W/J model to 1D GT

Heat transfer coefficient between water and metal is calculated by 3D-CFD

Current situation and challenge Modeling (Oil circuit 1)

Current situation and challenge Modeling (Oil circuit 2)

Direct 1D modeling from drawing

Current situation and challenge Modeling (Vehicle & T/M)

Direct 1D (0D) modeling from vehicle and T/M spec

Current situation and challenge Full vehicle 1D(0D) Simulation

Current situation and challenge Full vehicle 1D(0D) Simulation

Current situation and challenge MBD example

Currently MBD is still in concept phase

Current situation and challenge

MBD example (Concept)

Process	Function (performance) ex.	Design parameter
Vehicle	- Vehicle fuel consumption (Driving mode)	Engine Fuel Consumption(BSFC)Vehicle mass propertyT/M (CVT 1D parameter)
System (Engine)	- Engine Fuel Consumption (BSFC) MAP	- Friction (FMEP) MAP - Thermal efficiency
Component	- Friction (FMEP) MAP - Thermal efficiency	- Friction (cylinder system, valve, oil, water circuit) - Combustion chamber

2015/11/23 51

History & Future Vision of CAE Utilization

Contents

- 1. My work experience and current
- 2. History of CAE utilization in engine development process
- 3. Current situation and challenge
- 4. Future vision of CAE utilization

Future vision of CAE utilization Four Directions

- 1. Increment of CAE items
- 2. MBD from concept phase to realization

Extension of the past

- 3. Direct numerical Simulation for developing physical model
- 4. 1D(0D)+Robustness Simulation for cultivating design sense

1. Increment of CAE items

2. MBD from concept phase to realization

2015/11/23 53

Future vision of CAE utilization DNS for developing physical model

DNS for channel flow by Super parallel computer

- Clarification of mechanism of turbulent flow generation
- Verification of LES physical models

Future vision of CAE utilization 1D(0D)+Robustness Simulation

Shape→Function→Shape

(Base) (New)

- 1. Insight function from shape
- 2. Break-down function to riverhead | Training
- 3. Modeling of **function** and packaging (1D)
- 4. Optimization (Sensitivity and SN ratio)
- 5. 1D to 3D shape (parametric, topologic and finally completely new)

modeFRONTIER is very good tool for 4 and 5

2015/11/23 55

History & Future Vision of CAE Utilization

感谢您的关注

Thank you for your attention

ご静聴ありがとうございました

