

ANSYS在新能源汽车结构分析的应用

2016.11.23

IDAJ-China 技术部 ANSYS China 技术部

- ·所有公司名,产品名,服务名是 各个公司的商标或登记商标以及服务商标。
- ·本资料包括保密信息。没有得到敝公司的同意, 请不要使用, 发布, 复制本资料或本电子档。

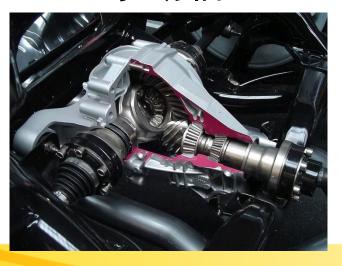
提纲

- ■新能源汽车研发过程的关键技术
- ■ANSYS技术在新能源汽车结构分析方面的应用
 - ▶电池包的仿真分析
 - ▶电机的仿真分析
 - ▶电力电子器件的仿真分析
 - ▶底盘、车身等系统及部件的仿真分析
- ■ANSYS新能源汽车的CAE解决方案

HEV/EV的关键技术

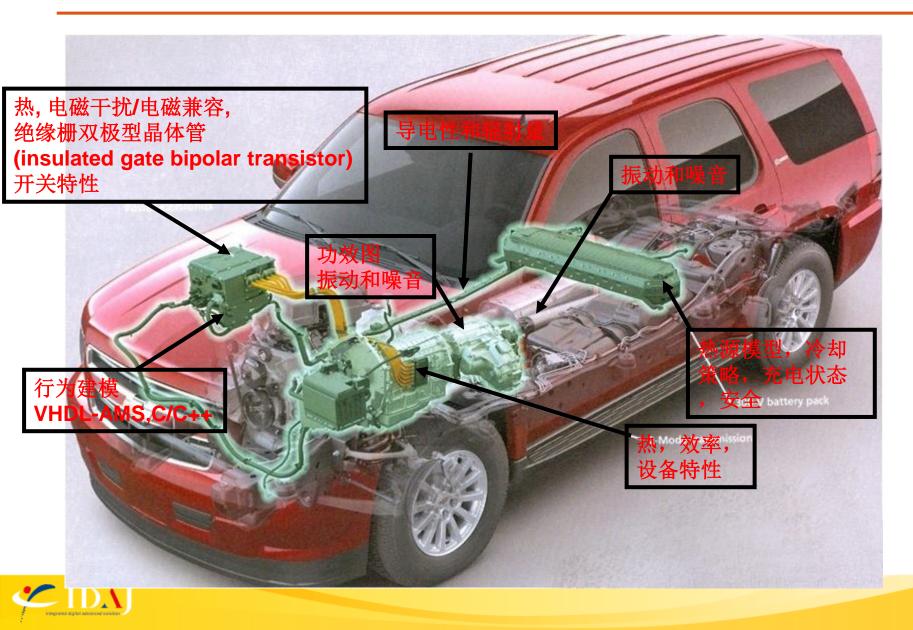
电池

逆变器

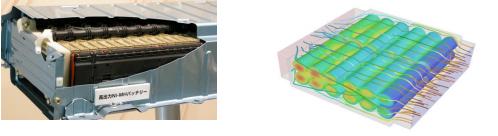

电机

控制器

驱动轴



HEV/EV的关键技术



电池-问题归纳

■电池:

▶ 电化学和组件设计

- ▶ 电池热管理:温度均匀性、冷/热启动/停止
- ▶ 电池机械损坏:碰撞、压损、穿孔
- ▶ 电池电子损坏: 过量充电或者放电、高强度电流充电或放
- 电,外部短路
- > 流动噪音、结构振动
- > 结构耐久性

电机-问题归纳

■电机:

- > 优化磁学设计:
- ▶ 热管理: 精确的损失映射
- ▶ 振动:减少发动机噪声
- > 系统集成:同时优化电动机和控制
- > 结构上的耐久性

电力电子器件-问题归纳

■电力与电子器件(逆变器和控制器等)

- ▶ 冷却: 为电热损失的热量排放设计途径
- ▶ 热应力、热变形问题(电-热-结构耦合)
- ▶ 控制逻辑: 在所有的行车工况下,用于优化电子传动部件和系统

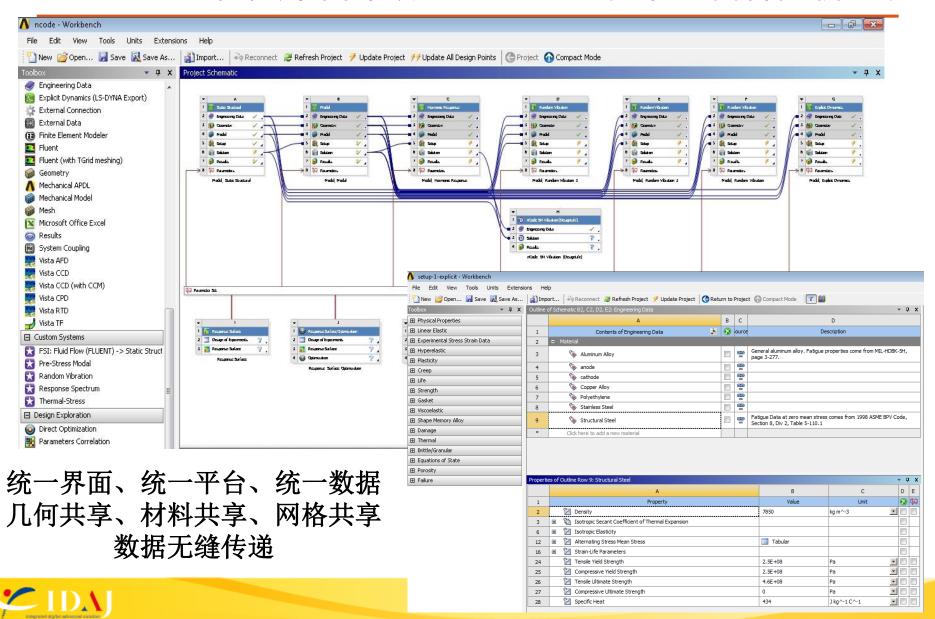
IGBT上的电流密度云图

■整机与系统的EMI/EMC:

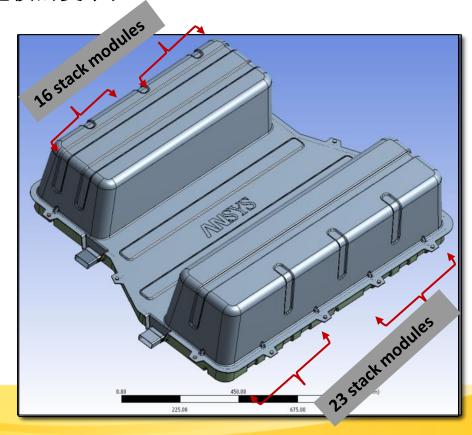
- ➤ 原型机制造之前的EMI/EMC分析、减少EMI/EMC的测试需求
- ▶ 电机、插板级别的EMI/EMC

提纲

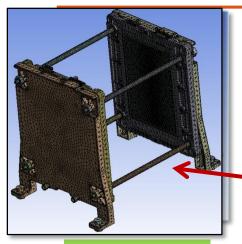
- ■新能源汽车研发过程的关键技术
- ■ANSYS技术在新能源汽车结构分析方面的应用
 - ▶电池包的仿真分析
 - ▶电机的仿真分析
 - ▶电力电子器件的仿真分析
 - ▶底盘、车身等系统及部件的仿真分析
- ■ANSYS新能源汽车的CAE解决方案

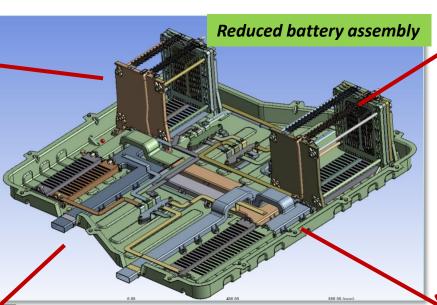

电池包结构分析要求(SAE J2380 、SAE J2464标准)

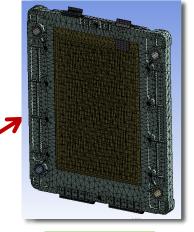
No.	Structural Integrity Standard Test Process		
1	Effect of body weight on Support [SAE J2380]		
2	Pre-stressed natural frequency analysis [SAE J2380]		
3	Pre-stressed Random Vibration analysis in Vertical, longitudinal and lateral direction [SAE J2380]		
4	Random Vibration fatigue analysis		
5	Drop Test from 2 meter at an angle [SAE J2464]		
6	Thermal Stress analysis [SAE J2464]		
7	Impact/Crush analysis [SAE J2464]		
8	Shock Spectrum analysis in Vertical, longitudinal and lateral direction [SAE J2464]		
9	Nail Penetration analysis [SAE J2464]		


Worbench仿真平台-实现电池包SAE标准的各种分析工况

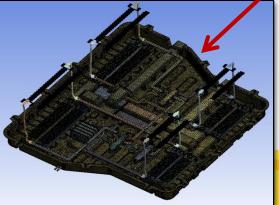
高效前处理-使用部件管理器进行电池包网格划分


- 在Workbench下导入UG的模型
- 电池包内部包含超过2000的零件
- 电池包内的很多零部件是一样
- ANSYS可以利用该一致性来降低建模的复杂性

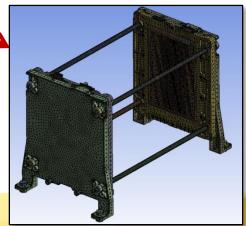



高效前处理-使用部件管理器进行电池包网格划分

16 stack module



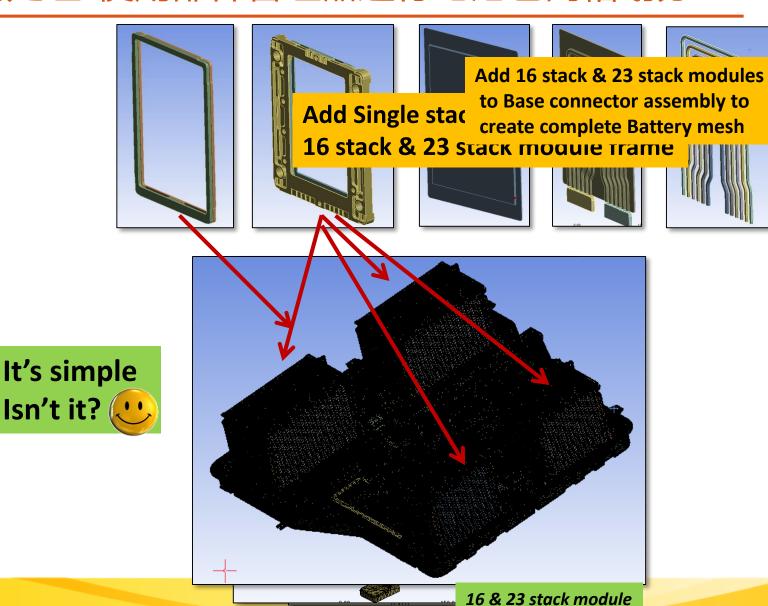
Mesh all subassemblies individually lies


Single stack

Base Connectors

- nodule_16_stack_frame_1.wbpj
- M module_23_stack_frame_1.wbpj
- nest_of_battery_parts_1.wbpj
- n single_stack_1.wbpj

收前处理-使用部件管理器进行电池包网格划分


ing

Single stack

8/

16 & 23 stack

Base connector assembly

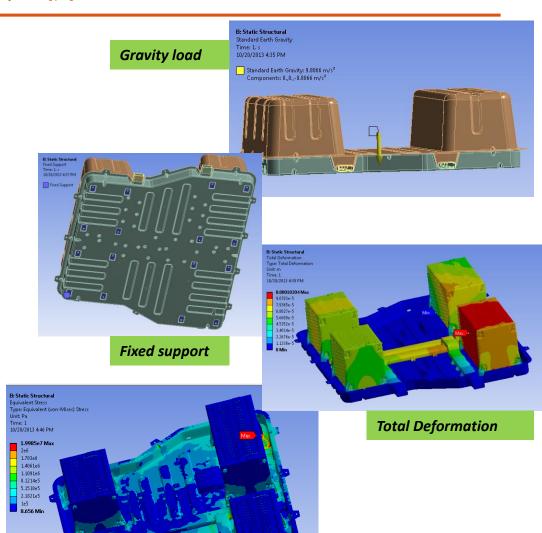
Equivalent Von Misses Stress

1、自重作用下的变形分析-SAE J2380

■ 目标:

➤ 分析支撑底座在电池自身 重量作用下的变形情况;

■ 载荷:


▶ 重力

■ 约束:

▶ 固定电池底座的安装位置

■ 结果:

- ▶ 电池顶部有较大的位移;
- ▶ 应力在许可范围内,最大 应力出现在最大应变位置 相对的支撑位置。

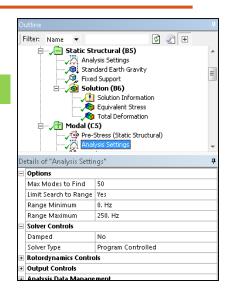
2、预紧力作用下的振动模态分析-SAE J2380

■ 目标:

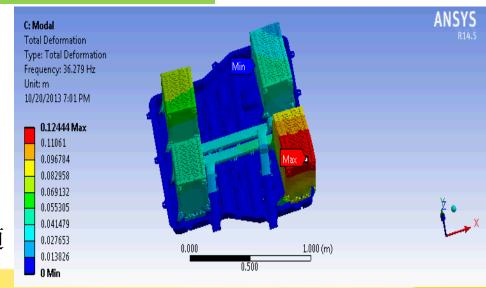
▶ 分析电池部件在预紧力下的振 动模态;

■ 分析设置:

➤ 由于随机振动载荷高达190 Hz ,分析中需要考虑1.5倍范围, 因此分析频率高达250Hz;


■ 约束:

▶ 由于分析预紧力下的工况,因 此约束是由静力学分析获得


■ 结果:

- ▶ 提取了32阶模态
- 80%的质量分布在三个方向,随机振动模拟的精度足够

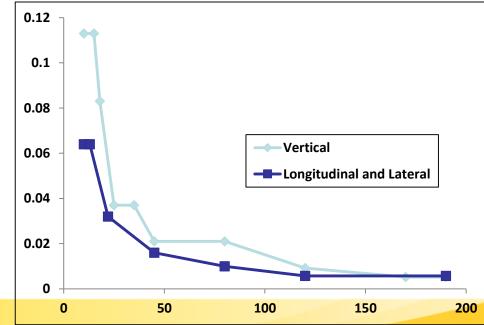
Analysis setting

Mode shape 1st mode = 36Hz

3、随机振动分析-SAE J2380

■ 目标:

▶ 在预紧力作用下,对纵向、侧向和垂直三个方向进行随机振动分析

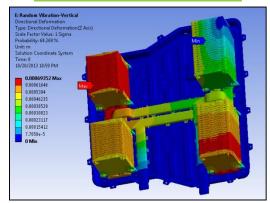

■ 载荷:

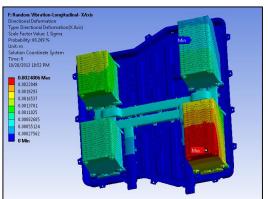
- ➤ 载荷按照SAE J2380中的标准
- → 纵向和侧向施加相同的振动载 荷

■ 约束:

> 约束是由静力学分析获得

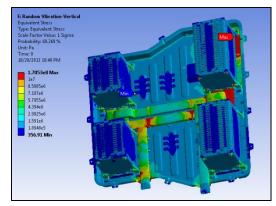
Vert	tical	Longitudinal and Lateral		
	1.9 grms		1.9 grms	
Frequency (Hz)	Amplitude	Frequency (Hz)	Amplitude	
	(G ² /Hz)		(G ² /Hz)	
10	0.113	10	0.064	
15	0.113	13	0.064	
18	0.083	22	0.032	
25	0.037	45	0.016	
35	0.037	80	0.01	
45	0.021	120	0.0057	
80	0.021	190	0.0057	
120	0.0092			
170	0.0052			
190	0.0052			

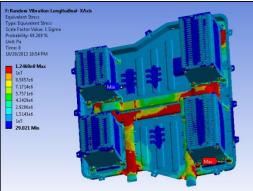

随机振动分析-SAE J2380

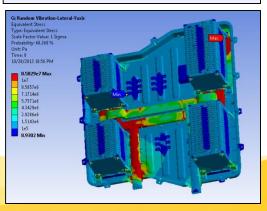

Directional deformation

■ 结果:

- ➤ 无量纲应力在三个方向 都是安全的,最大值发 生在垂直方向
- ▶ 变形同样很小,最大值 发生在纵向
- ➤ 尽管纵向和侧向激励一 致,但结果差别明显


Direction	Deformation (m)	Equivalent Stress (Pa)
Vertical	6.93e-4	1.78e8
Longitudinal	2.4e-3	1.24e8
Lateral	1.19e-3	8.58e7

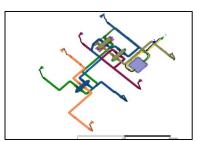




1 sigma equivalent stress

4、热应力分析-SAE J2464

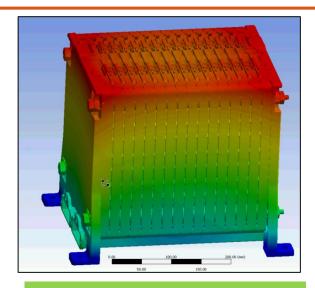
■ 目标:

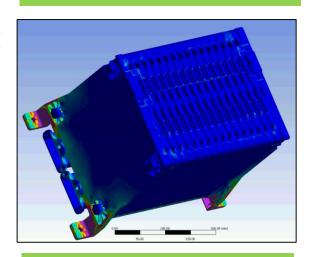

▶ 对电池模块进行热应力分析

■ 载荷

- ➤ 热载荷由MAXWELL进行电磁场分析获 得
- ▶ 电池模块固定在底面上

■ 结果:


▶ 分析热应力和变形是否导致部件的失效



Electromagnetic FEA Analysis for Busbar RLC Network Extraction

Structural FEA: Total Deformation

Structural FEA: Equivalent Stress

5、跌落分析-SAE J2464

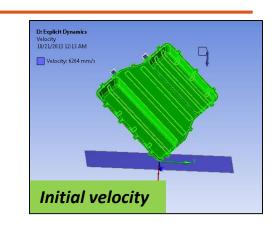
■ 目标:

➤ 按照SAE J2464标准进行电池组跌落分析

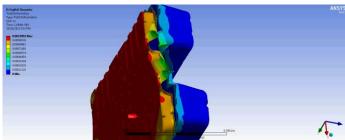
■ 工具:

▶ 显式动力学模块

■ 网格 & 接触:


- ▶ 避免使用金字塔网格,保证网格可以用于所有类型的分析
- ➤ 可能破环的接触位置定义为超过150MPa 后自动分离


■ 载荷 & 边界条件:


- ▶ 电池从2米高以45度角跌落
- ▶ 为节省分析时间,定义接触前的跌落速度作为初始载荷

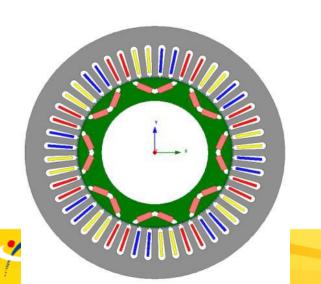
■ 结果:

> 套件的上下位置分离

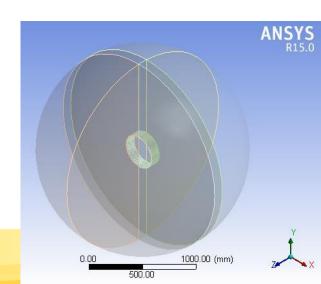
Total deformation after 15% solve time

提纲

- ■新能源汽车研发过程的关键技术
- ■ANSYS技术在新能源汽车结构分析方面的应用
 - ▶电池包的仿真分析
 - ▶电机的仿真分析
 - ▶电力电子器件的仿真分析
 - ▶底盘、车身等系统及部件的仿真分析
- ■ANSYS新能源汽车的CAE解决方案

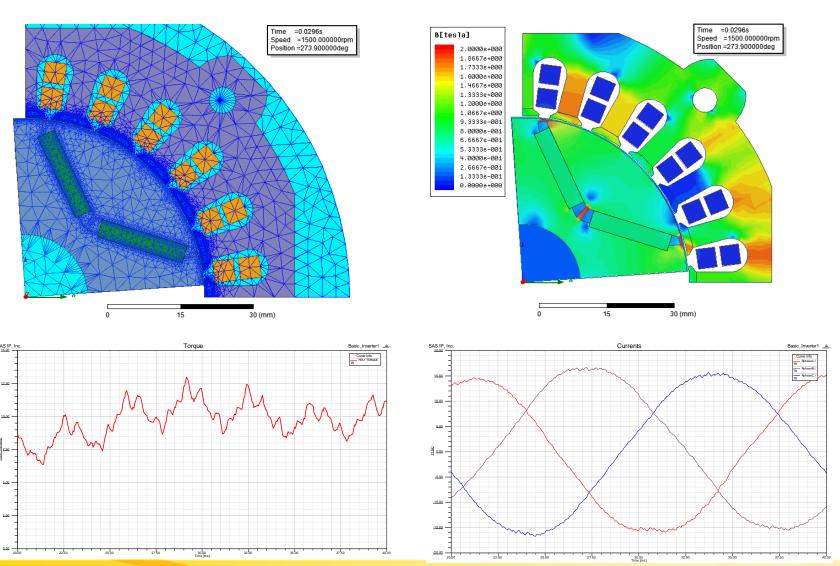

电机电磁、振动和噪声耦合分析

■ 目标:

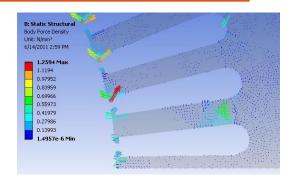

▶ 以永磁同步电机模型为例,利用ANSYS Workbech强大的多物理耦合功能,完成电机的电磁场、结构振动和噪声的耦合分析。

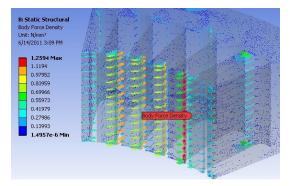
■ 解决方案:

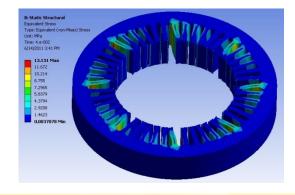
- ➤ 在Maxwell中计算定子内表面径向和切向电磁力,作为激励源耦合到 Mechanical中,
- ➤ 然后在ANSYS Mechanical中进行该电机三维定子的谐响应扫频分析;
- ➤ 谐响应分析结果作为激励耦合到Mechnical ACT中,进行声学分析。



Maxwell – Simplorer电磁场分析

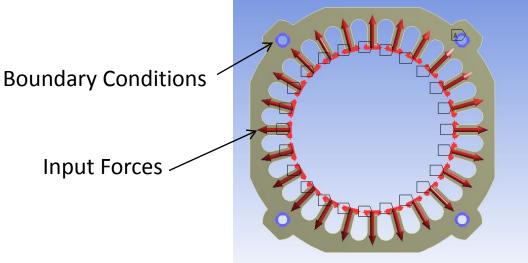

电磁力计算


■ 用气隙磁通密度计算力


Maxwell Stress Tensor [9]

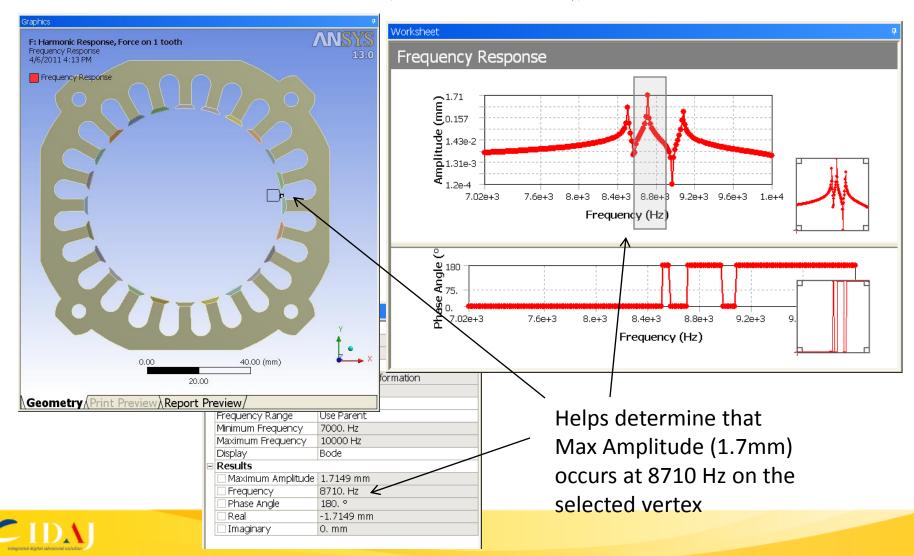
$$F_{tan} = \frac{L}{\mu_0} \oint B_t B_n dl \qquad F_{rad} = \frac{L}{2\mu_0} \oint (B_n^2 - B_t^2) dl$$

- Force calculation at a point on the stator.
- Force on a line in the airgap
- Force on a line co-linear with the stator tooth
 This is common method in literature.
- Edge Force Density
 - Default field quantity available in Maxwell
 - Can be used for creating lumped force calculations on tooth tips
- Maxwell电磁力自动映射到 Mechanical. (2D-2D, 2D-3D, 3D-3D)



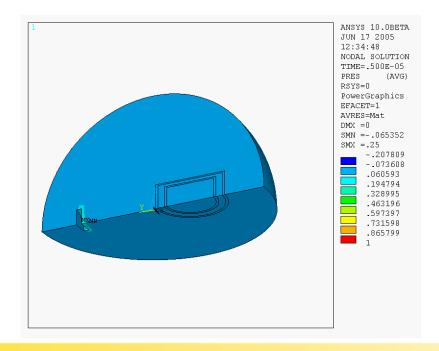
谐响应分析

- 以确保给定的设计可承受在不同频率的正弦负荷
- 以检测共振响应,如果需要(例如,使用机械阻尼器, 改变PWM频率等)避免它
- 后续进行声学分析的振动声源


Appling harmonic forces from Maxwell into ANSYS Mechanical

谐响应分析 – Bode plot

■ 绘制某一节点位置的频率响应曲线(振幅和相位)



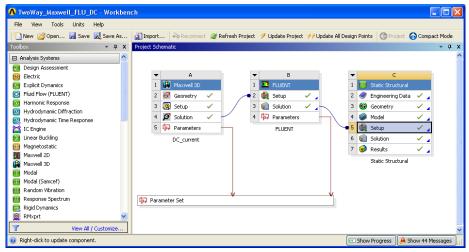
结构振动产生噪声 (ANSYS Mechanical)

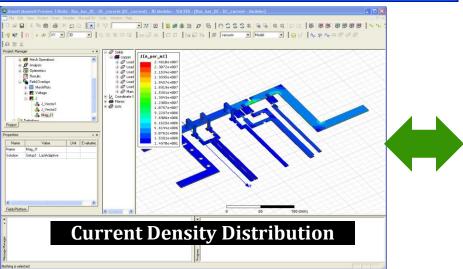
■ 计算由结构振动引起的噪声分析

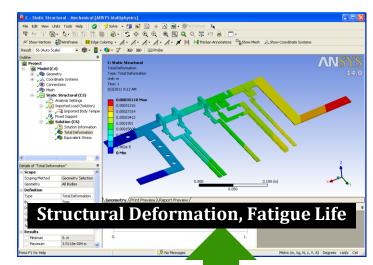
- ➤ 在 ANSYS Mechanical模块中进行结构动力学分析,计算结构的振动。载荷激励可以是从Maxwell计算获得;
- ▶ 将上一步的结构振动计算的结果作为声场分析的声源,进行声波

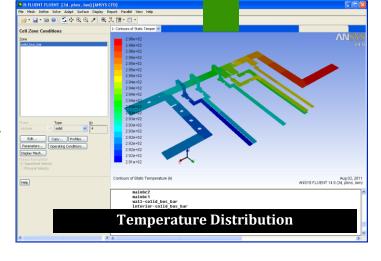
的声场分析。

声学分析- 声压结果

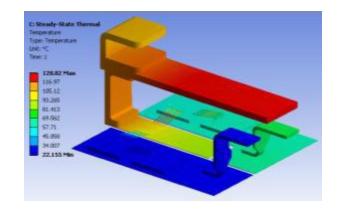

提纲

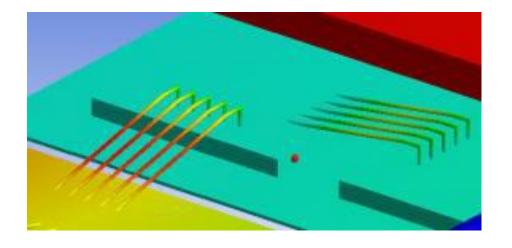

- ■新能源汽车研发过程的关键技术
- ■ANSYS技术在新能源汽车结构分析方面的应用
 - ▶电池包的仿真分析
 - ▶电机的仿真分析
 - ▶电力电子器件的仿真分析
 - ▶底盘、车身等系统及部件的仿真分析
- ■ANSYS新能源汽车的CAE解决方案





1、Busbars 的电-热-结构多物理场耦合分析



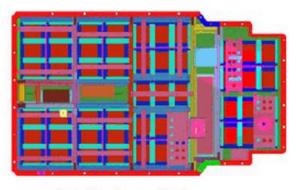


2、IGBT逆变器设计-机械应力分析(电磁-热-结构)

Thermal-Structural
Plus
Electromagnetic-Structural

提纲

- ■新能源汽车研发过程的关键技术
- ■ANSYS技术在新能源汽车结构分析方面的应用
 - ▶电池包的仿真分析
 - ▶电机的仿真分析
 - ▶电力电子器件的仿真分析
 - ▶底盘、车身等系统及部件的仿真分析
- ■ANSYS新能源汽车的CAE解决方案

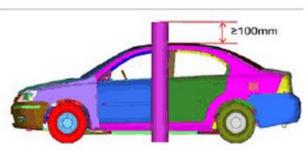


电动汽车的碰撞安全与评估

■ 基于Euro-NCAP侧面柱碰工况

整车有限元模型

电池模组有限元模型


整车及电池模组有限元模型

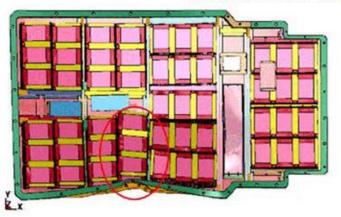
側面撞柱碰撞

Euro-NCAP 侧面柱碰工况

LS-Dyna碰撞分析

电动汽车的碰撞安全与评估

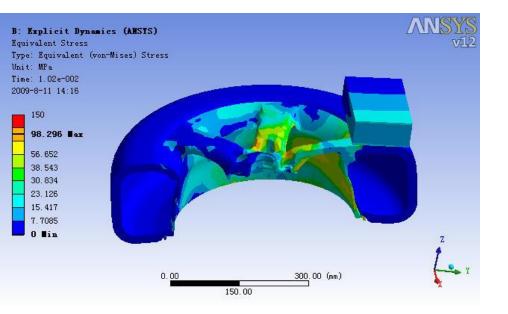
■ 有限元仿真结果评估

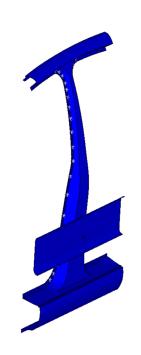


碰撞最初时刻

碰撞最大变形时刻

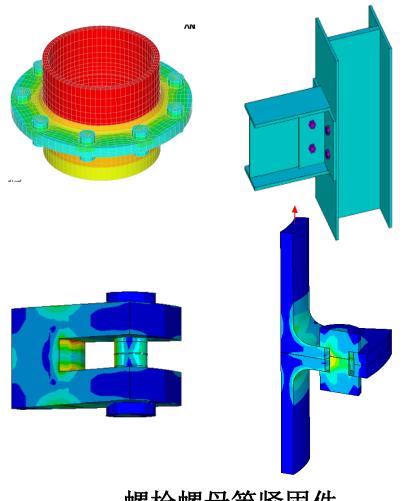
侧面柱碰变形结果

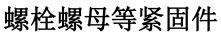

LS-Dyna碰撞分析

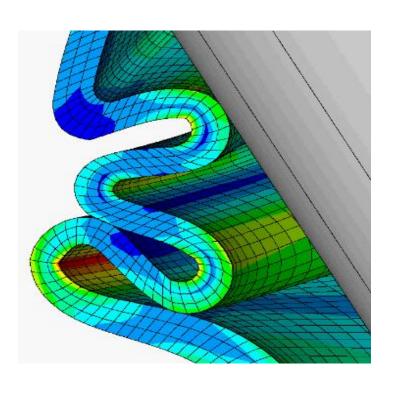

内部电池模组变形结果 (最大变形时刻)

其他应用

ANSYS

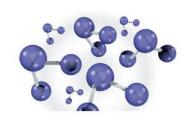

轮毂的冲击仿真

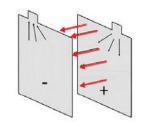

B柱的优化设计

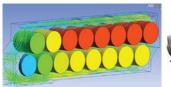


其他应用

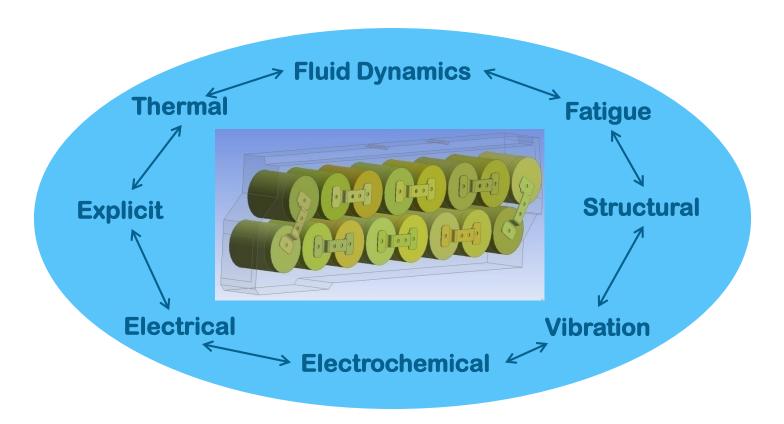
复杂非线性问题——橡胶变形


提纲

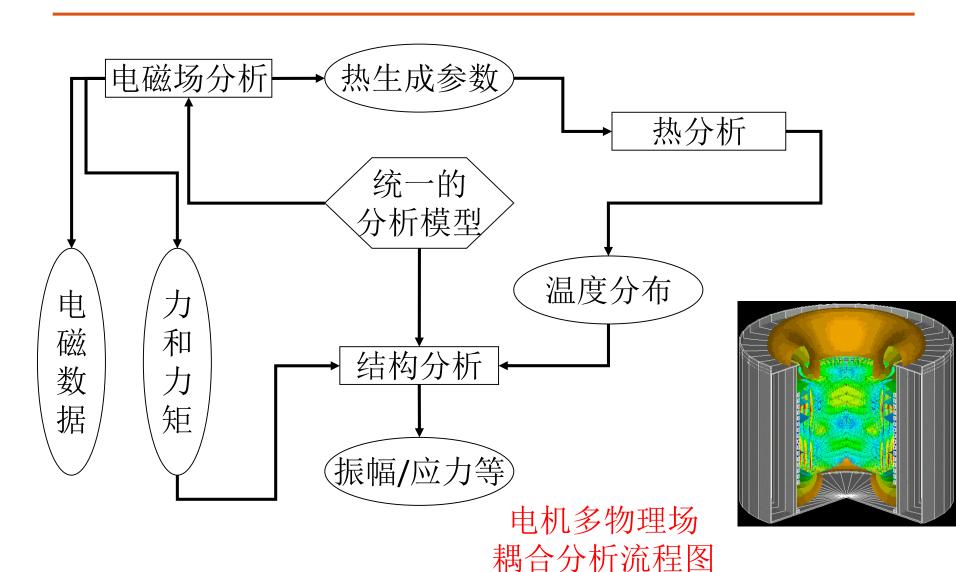

- ■新能源汽车研发过程的关键技术
- ■ANSYS技术在新能源汽车结构分析方面的应用
 - ▶电池包的仿真分析
 - ▶电机的仿真分析
 - ▶电力电子器件的仿真分析
 - ▶底盘、车身等系统及部件的仿真分析
- ■ANSYS新能源汽车的CAE解决方案



新能源汽车显著的多域、多物理场特性



Molecular Level	Electrode Level	Cell Level	Pack Level	Powertrain and Vehicle
Material innovationMaterial selection	 Electrode layout Manufacturing process development Life 	 Charging, dischar-ging profiles Heating Safety under abuse Swelling, deformation 	•BMS Logic •Safety •Durability	Level •System Integration


新能源汽车显著的多域、多物理场特性

新能源汽车显著的多域、多物理场特性

ANSYS新能源汽车的CAE解决方案

Systems and Multiphysics

ANSYS Simplorer ANSYS Workbench
ANSYS Engineering Knowledge Manager

ANSYS DesignXplorer

ANSYS HPC

Structural Mechanics

ANSYS Mechanical
ANSYS AUTODYN
ANSYS LS-DYNA
ANSYS nCodeDesignLife

Fluid Dynamics

ANSYS FLUENT
ANSYS CFX
ANSYS POLYFLOW
ANSYS Icepak

Electromagnetics

ANSYS HFSS
ANSYS Maxwell
ANSYS Q3D
ANSYS Designer

谢谢

技术支持邮箱: support@idaj.cn

艾迪捷信息科技(上海)有限公司 www.idaj.cn

北京

地址:北京市朝阳区光华路甲14号诺安基金大厦1601室,

100020

电话: 010-65881497/98 传真: 010-65881499 上海

地址:上海市浦东新区张杨路620号中融恒瑞国际大厦东楼

2001室, 200122

电话: 021-50588290/91 传真: 021-50588292