

凸轮罩盖油气分离器CFD分析

廖淑华

马瑞利(中国)有限公司 ---动力系统

代讲人: IDAJ-CHINA 叶良春

目 录

- ▶ 凸轮罩盖油气分离器
- ➤ CFD 模型

➤ CFD 结果

> 油气分离器测试

凸轮罩盖油气分离器

凸轮罩盖油气分离器

油气分离器典型结构

Oil droplet direction

A typical passenger car oil particle distribution (*)

Droplet Diameter (µm)

CFD模型

> CFD SOFTWARE: Fluent 16.1, ICEM-CFD

> TURBULENCE MODEL: Realizable k-e model with standard wall function

MESH GENERATION

Tetrahedral mesh /hexahedral with boundary layers by prism element

DISCRETIZATION

Pressure: second order upwind

Momentum, turbulent kinetic energy and dissipation rate: second order upwind

CONVERGENCE CRITERIA

Continuity, velocity, pressure: 10e-4

• K&E: 0.0005

DPM: DISCRETE PHASE MODEL

• In the standard formulation of the Lagrangian multiphase model, described in discrete phase, the assumption is that the volume fraction of the discrete phase is sufficiently low: it is not taken into account when assembling the continuous phase equations.

$$\begin{split} \frac{\partial p}{\partial t} + \nabla . \left(p \vec{\vartheta} \right) &= S_{DPM} + S_{other} \\ \frac{\partial p \vec{v}}{\partial t} + \nabla . \left(p. \, \vec{v}. \, \vec{v} \right) &= -\nabla p + \nabla t + p \vec{g} + \overrightarrow{F}_{DPM} + \vec{F}_{other} \end{split}$$

CFD模型

Outlet

$$y+= \mu * y/u = 30 \sim 120$$

Skewness<0.7

Boundary layer: 5

First aspect ratio: 10

FLUID	PARAMETER	MAGNITUDE	UNIT	REMARK
AIR	Inlet Mass Flow Rate	65 and 80	[l/m]	Customer required
	Density	1.225	[kg/m³]	Software data
	Viscosity Coefficient	1.789e-5	[kg/m-s]	
	Inlet Mass Flow Rate	1e-6	[kg/s]	Customer required
	Inlet Mass Flow Rate Density			•
Oil			[kg/s] uel-Oil-liquid in C	•

CFD模型

```
DPM Iteration ....
355
number tracked = 63412, escaped = 21412, aborted = 0, trapped = 34759, evaporated = 0, incomplete = 7241
```

When DPM Iteration= 355, the number of the incomplete particle 7241, and escaped number=21412

```
DPM Iteration ....

Done.

number tracked = 63412, escaped = 10146, aborted = 0, trapped = 53266, evaporated = 0, incomplete = 0
```

When DPM Iteration finished, the incomplete particle was absorbed by wall or baffle plate, then escaped number=10146

=> The oil separator efficiency= 53266/63412=84%

计算油气分离效率的方法

Droplet diameter: 1µm

E= Oil Separator efficiency = 72%

Droplet diameter: 6µm

E= Oil Separator efficiency = 87%

E: Oil separator efficiency N_{total} : Total number of droplet

 N_{escape} : Number of escape droplet

E= Oil Separator efficiency = 97.2%

Droplet diameter: 12µm

Case @65I/min AIR FLOW RATE

Droplet diameter: 1µm

E= Oil Separator efficiency = 78%

Droplet diameter: 6µm

E= Oil Separator efficiency = 89%

E: Oil separator efficiency

 N_{total} : Total number of droplet

 N_{escape} : Number of escape droplet

Droplet diameter: 12µm

E= Oil Separator efficiency = 98%

Case @80I/min AIR FLOW RATE

The oil separator efficiency will be higher along with more air flow rate.

Oil consumption calculation as below:

Full load at 65I/min:

The weighted average is 86.23%= ((0.5%*72%+5%*87%+0.3%*97.2%)/5.8%)

Oil consumption would be:

3.6g/h*(1-86.23%)=0.4956g/h<0.7g/h(customer requirement)

Full load at 80l/min :

The weighted average is 88.51% = (0.5%*78%+5%*89%+0.3%*98%)/5.8%

Oil consumption would be:

3.6g/h*(1-88.51%) = 0.4133g/h < 0.7g/h (customer requirement)

Specifications:

Gas volume flow: 0 – 170 l/min (Vol. at 1 bar, 23°C)

Particle size (oil drops): 0,3 µm - 10 µm

Pressure: 0,1 – 1,0 bar (abs)

Temperature range: 23°C - 100°C

Flow rate control and measurement panel

Rocker cover with integrated oil separator

Oil fogging chamber

Temperature and oil fog control unit

Example measurement report: Diesel engine oil-separator prototype

感谢聆听!