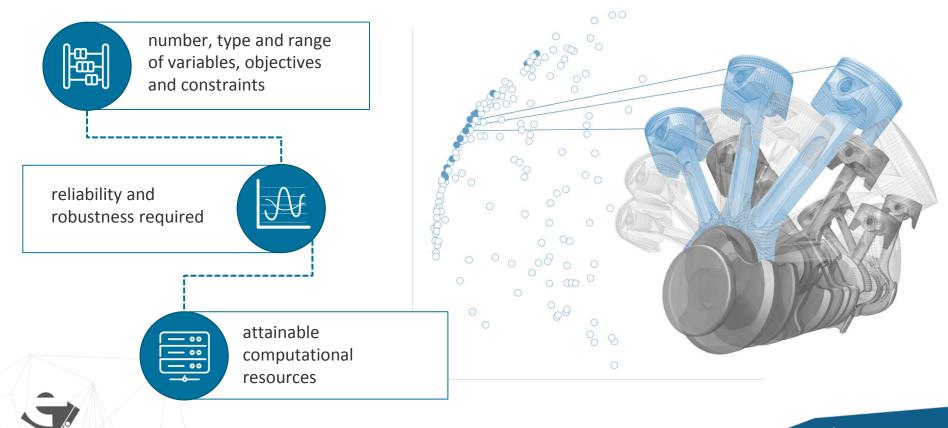


modeFRONTIER

The Integration Platform for Multiobjective and Multidisciplinary Optimization

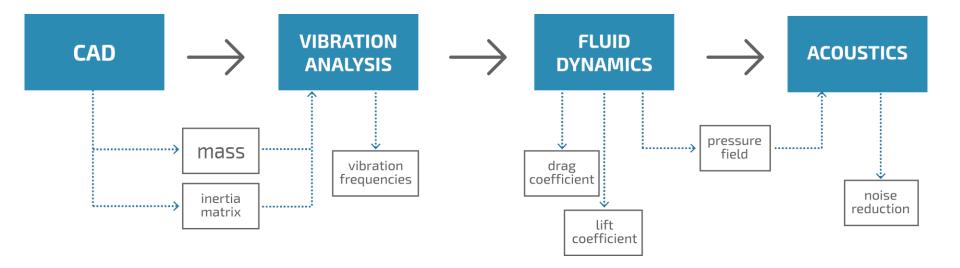
Danilo Di Stefano Product manager modeFRONTIER


> Your True Partner for CAE SCFD ICSC2016

IDAJ CAE Solution Conference

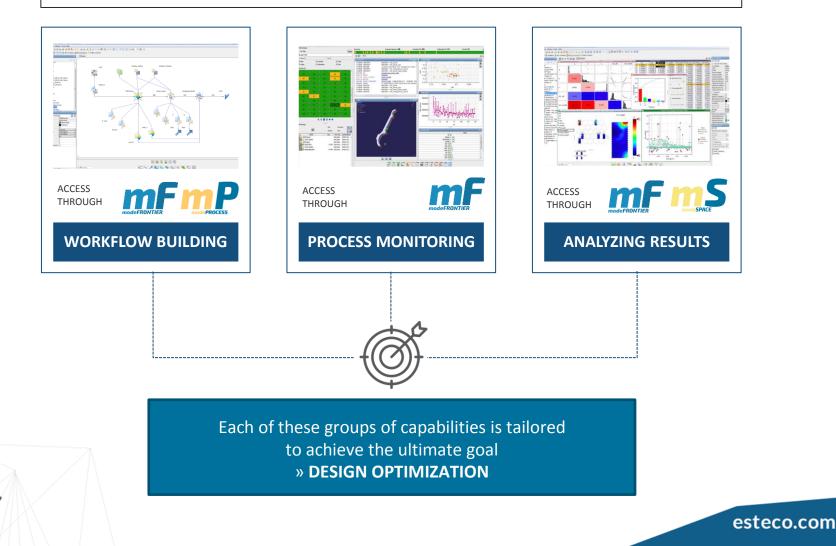
>> Multiobjective Optimization with modeFRONTIER

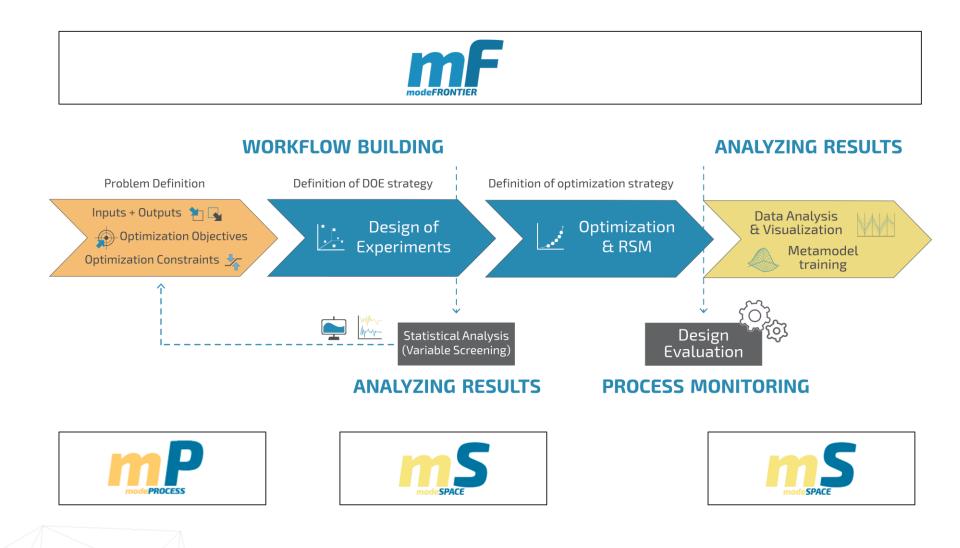
Multi-objective problems are solved using **sophisticated optimization algorithms**, which identify a set of **Pareto designs** whose objective functions are non-dominated by any other design among those tested.


With **modeFRONTIER** you can define the most suitable optimization strategy according to:

>> Multidisciplinary Optimization with modeFRONTIER

modeFRONTIER integrates with **any parametric software** (CAD, CAE, FEM, generic, etc.) **automating** the entire optimization process in which data is transferred from one simulation to the next and the relevant values of outputs and objectives are extracted.




This **multidisciplinary approach** allows to exploit the **interaction** between the disciplines and determine the **global optimum solution**, instead of optimizing each discipline sequentially.

modeFRONTIER offers a **modular environment** giving access to different sets of functionalities

ME Z016 modeFRONTIER

Concept

>> modeFRONTIER2016 Viewpoint

Improving efficiency

- Tailored access to functions
- Flexible team-focused licensing

Reducing complexity

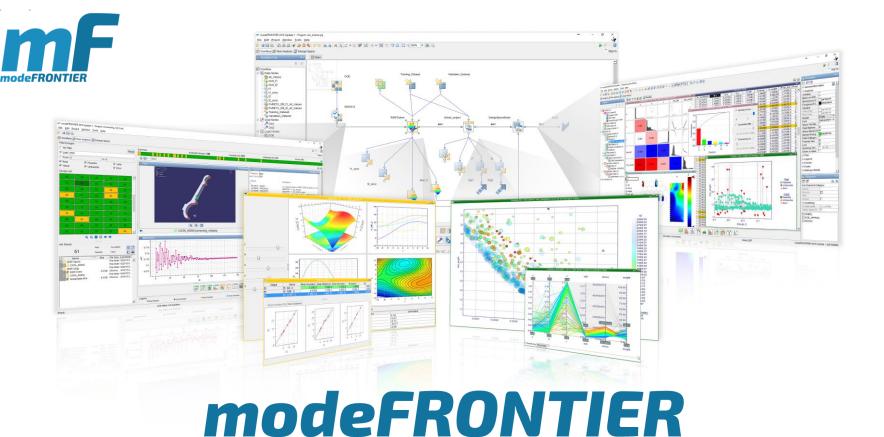
- ✓ Worflow management
 - Customized views

Cutting development time

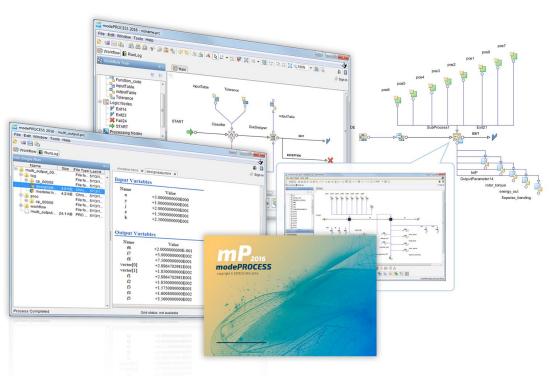
- Programmatic access to Design Space functions
 - Enhanced wizards for key functions

Consolidate specialized expertise and streamline teamwork

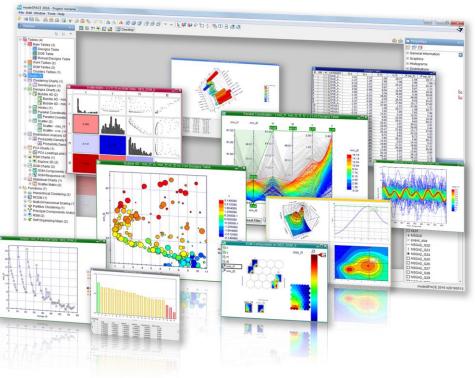
>> modeFRONTIER2016 Modular Environment



ME Z016 modeFRONTIER

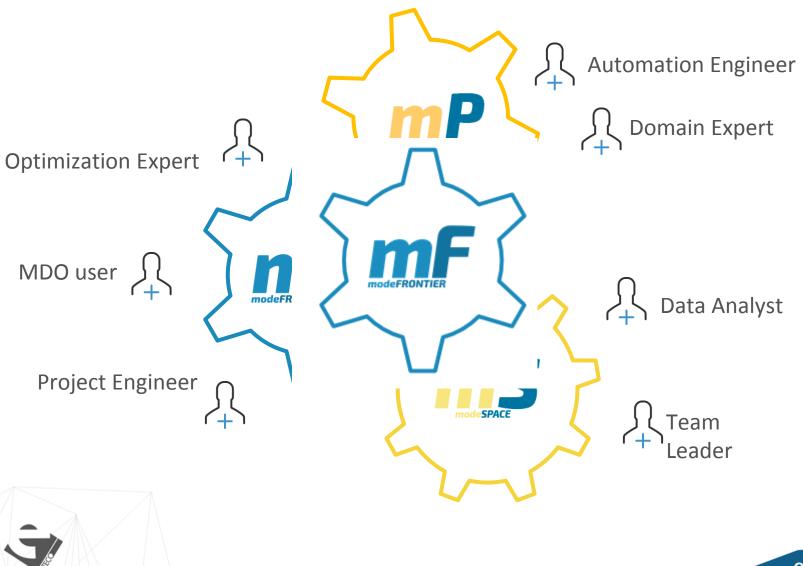

Modules

Streamlines the design process with powerful workflows, innovative algorithms and sophisticated post-processing tools. Its advanced capabilities for multidisciplinary design, keeps it at forefront of engineering technology.



modePROCESS

Independent desktop application useful to describe processes in the form of graphical workflows, by specifying which parameters and calculations are required to solve a design problem.

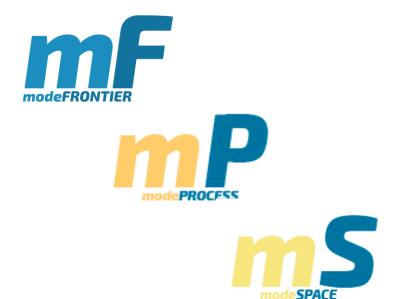


modeSPACE

Includes the sophisticated set of modeFRONTIER tools for data analysis and problem investigation and support to decision making, both in the pre-optimization and in the post-processing phase.

>> License and role management streamlined

>> Efficient license handling for workflow and design space

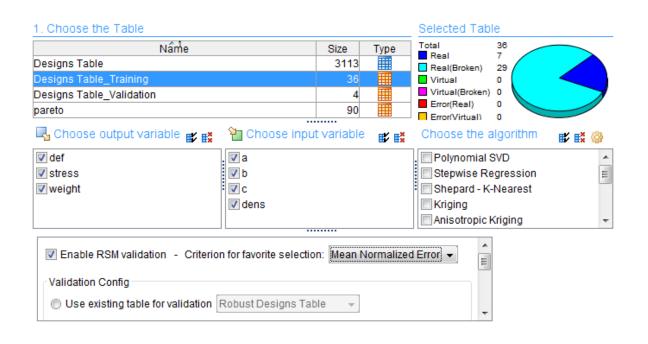

File Edit Project Window T	ools	s Hel	р
🖎 📹 🔚 🖍 🕼 📾 🚳	g L	ð (🗎 🍓 🤣 🍤 🏦 👍 📘
📳 Workflow 達 Run Analysis	; 🛅	Desi	gn Space
The Workflow is in Read-only	mod	le. E	nable Edit mode
🔒 Workflow Tree		Ψ×	🔁 Main
	te:		
🕄 Workflow			

mF2016 news:

mF license contains two separated Workflow and DesignSpace keys, which can be enabled/disabled

Advantage:

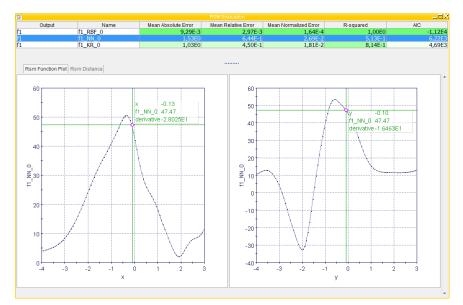
Two users can simultaneously access same mF license, working on the two environments (keys) separately


MEZO16 modeFRONTIER

Data Space

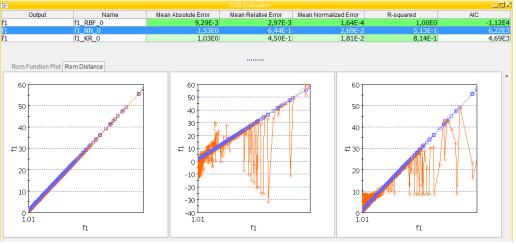
>> Automatic RSM Training mode

Going straight from data to RSM with less clicks and less parameter settings

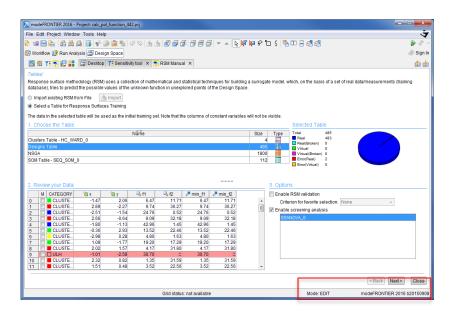


guided training process

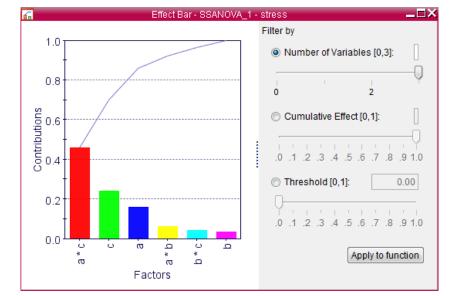
- ✓ Saving time
- Easier and faster editing
- Manual RSM training wizard still available



>> RSM Evaluation chart

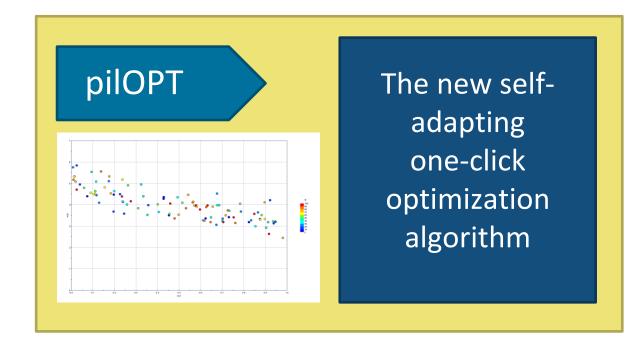

All-in-one chart showing relevant information for the quality evaluation of many RSMs

Useful to compare multiple RSMs, selecting the best model



 Efficient with scarce and not factorial database

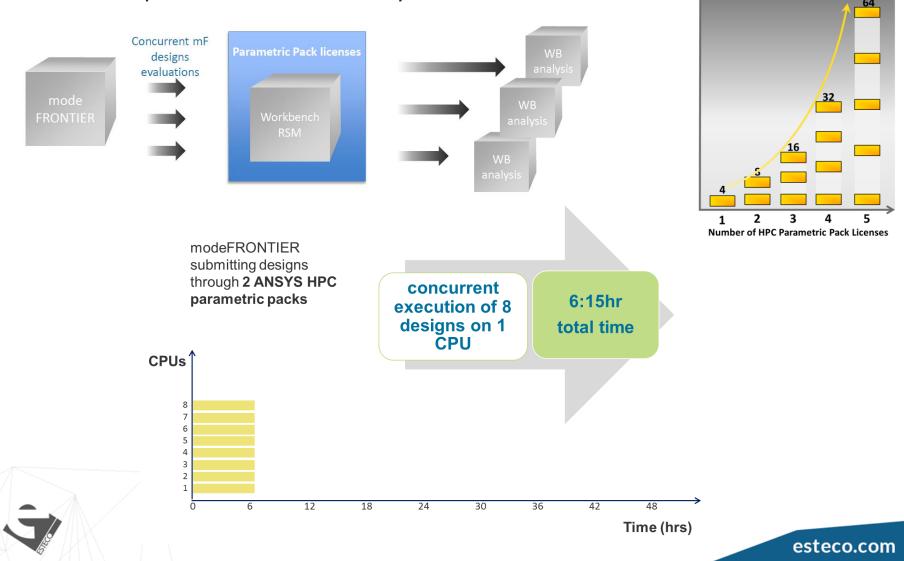
 Detect non-linear and interaction effects Variable screening based on SS-ANOVA >> detects the most important input variables in a process



MEZO16 modeFRONTIER

Process & Optimization

pilOPT: self-adapting one-click optimizer

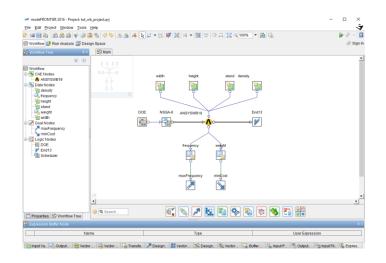

Improved pilOPT release:

- responding to a wider variety of engineering designs problems
- ✓ increased performance with single-objective problems
- better exploitation of computational resources
- effective handling of problems with discrete variables.

>> Integration node – Ansys WB Parametric Pack

modeFRONTIER 2016 supports the HPC license consumption scheme from Ansys Workbench

Number of Simultaneous Design Points Enabled


>> ANSYS direct interface in modeFRONTIER

File Edit Project Window Tools Hel	p		Ť
	🖹 🐄 💛 🖄 📥 🚜 📘 🗸 😿 🕌	≝ 배 ▼ 蹬 ☆ □ 井 其	🖬 - 🎭 🐗
🚱 Workflow 😰 Run Analysis 🚮 Des			🚸 Sign In
🚱 Workflow Tree 🛛 🔍 🕂	🔁 Main		
15 BI			^
B Workflow	R		
Properties +×			
			×
			,
Properties Global Prope	Search	🋒 ங 🖍 🔛 🛍 🌤 🛍 隊 🖫	
1 Input Variable	·		ج×
	A		

>> Ansys Integration node - advantages

Workbench licenses

ly exploit the process automation capabilities of modeFRONTIER in nbination with the accuracy of the ANSYS multiphysics solvers	>> get optimization results before and dedicate more time to post processing and data analysis
>> Multiple concurrent design evaluations without checking out additional	>> save on HPC setup costs

>> Basic and Expert mode

🔛 Scheduler Properties	
Optimization Wizard	🗆 NSGA-II 🖾 🛐
Algorithm Parameters: Basid Expert Couldionary Algorithms MOGA-II NSGA-II AKNOGA Evolution Strategy Heuristic Optimizers SiMPLEX	Scheduler based on NSGA-II - Non-dominated Sorting Genetic Algorithm II of prof. K. Deb et al. (2000, KanGAL Report No. 200001). Main features: 1) Allows both continuous ("real-coded") and discrete ("binary-coded") variables. 2) Allows user defined discretization (base). 3) The constraint handling method does not make use of penalty parameters. 4) Implements different elitism strategies for multiobjective search. 5) Diversity and spread of solutions is guaranteed without use of sharing parameters. 6) Allows concurrent evaluation of the n independent individuals. The n (number of individuals per generation) entries in the DOE table are used as the problem's initial population. NOTE: MFGA algorithm implements a steady-state evolution scheme which cannot guarantee the repeatability of the design sequences unless the number of concurrent
MOSA MOST MOPSO POWELL	design evaluation is set to 1. Parameters Number of Generations [1,5000]100 Maximum Number of Evaluatio [1,50000] 1000 Algorithm type Original NSGA-II algorithm
📲 Multi-Strategy Algorithms 🛛 😞 🖵	
Run Options RSM Options MORDO C	puons
Run Options	
Num. of Concurrent Design Evaluations Save Error Design in DB	
Evaluate Repeated Designs	
Save Repeated Design in DB	
Evaluate Unfeasible Designs	
Force Error Design to NaN	
ОК	Cancel Help

Expert mode: edit advanced algorithm parameters

Basic mode: easy set-up of only essential algorithm parameters

🔛 Scheduler Properties		×
Optimization Wizard	∃ NSGA-II	5
	Parameters	
Algorithm Parameters: Basic	Number of Generations [1,5000] 100	
Expert	Maximum Number of Evaluatio [1,500000] 1000	
	Algorithm type Original NSGA-II algorithm	•
MACK	GA Operators	
Lipschitz Sampling	Crossover Probability [0.0,1.0] 0.9	
Adaptive Space Filler	Mutation Probability for Real-Code[0.0,1.0] 1.0	
	Mutation Probability for Binary Stri [0.0,1.0] 1.0	
Evolutionary Algorithms 💿 🗉	Advanced Parameters	
MOGA-II	Automatic Scaling for Mutation Probability	
🕷 NSGA-II	Distribution Index for Real [5.0E-4,100.0] 20.0	
ARMOGA	Distribution Index for Real [5.0E-4,500.0] 20.0	
Evolution Strategy	Crossover Type for Binary-Coded Variables Simple	•
	Random Generator Seed [0,999] 1	
📲 Heuristic Optimizers 🛛 🔕	Category Parameters	
SIMPLEX	Categorize Generations	
@ MOSA		
MOGT		
MOPSO T		
i 🔤 MOFSO		
Run Options RSM Options MORDO O	ptions	
Run Options		*
Num, of Concurrent Design Evaluations	1	
Save Error Design in DB		E
Evaluate Repeated Designs		
Save Repeated Design in DB		
Evaluate Unfeasible Designs		
Force Error Design to NaN		
OK	Cancel Help	

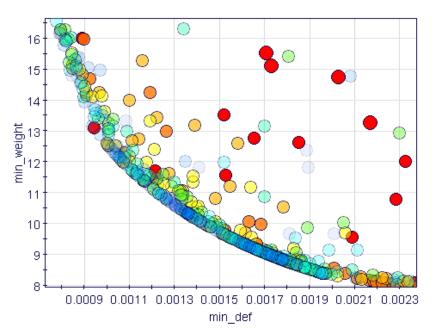
Automatic Setup Algorithms

We have expanded our selection of One-Click Optimizers from the adaptive multi-strategy pilOPT to also include automatic singleparameter setup versions of our classic algorithms MOGA-II and MOPSO.

No DOE required – the chosen algorithm generates it automatically

(AP)	a	0						
9	Evolutionary Algorithms	8	⊞ MOGA-II					
8	🕈 MOGA-II							
8	NSGA-II		Algorithm Configuration			Automatic		
8	ARMOGA							
8	Evolution Strategy		Number of Evaluations		[1,500000]	5000		
ę	Heuristic Optimizers						5	j –
8	SIMPLEX							
8	MOSA	Algorithm C	Configuration		Manual		+	
8	MOGT	Paramete	ers					
8	MOPSO	Number of	Generations	[1,5000]	100			
8	POWELL	Algorithm T	уре		MOGA - Ge	enerational Evolution	-	•
		🗏 GA Opera	itors					
		Probability (of Directional Cross-Over	[0.0,1.0]	0.5			
		Probability (of Selection	[0.0,1.0]	0.05			
		Probability (of Mutation	[0.0,1.0]	0.1			
		DNA String	Mutation Ratio	[0.0,1.0]	0.05			
		Advanced	l Parameters					_
		Elitism			Enabled			·
		Treat Const	traints		Penalising) Objectives	•	·
		Reject Input	t-Unfeasible Designs					
		Maximum N	lumber of Rejections	[1,999]	100			
٦		Random Ge	enerator Seed	[0,999]	1			
1		Category	Parameters					
~		Categorize	Generations					
U	ally.	Categorize	Operators					

Only one parameter is required – **Number of Design Evaluations**. Population size and number of iterations/generations computed according to the problem characteristics.



MOGA-II and MOPSO are also available in the classic Manual setup mode in which all parameters are exposed.

>> New MOPSO Algorithm

Good alternative to Genetic Algorithms because it has a **higher convergence rate** if the evaluations require greater computational effort.

All parameters are exposed so the user can tune them to adapt the MOPSO performance to their problems.

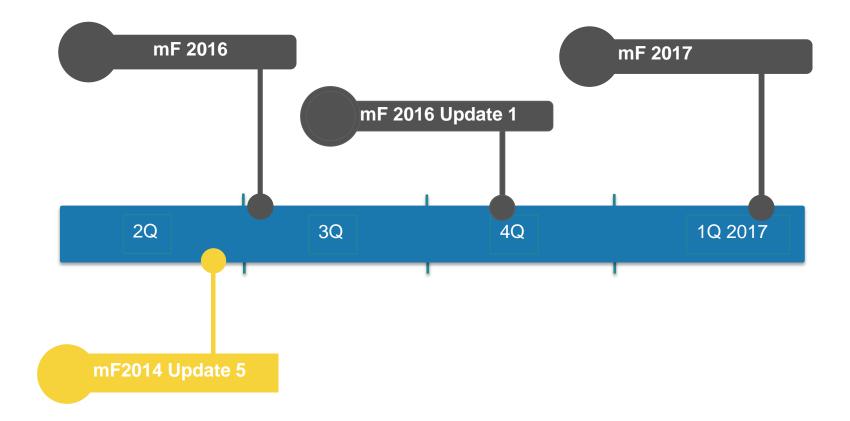
esteco.com

Main features:

- \checkmark Uses **elitisim** the best solutions are stored in the elite set and updated at each iteration
- Steady-state evolution enables the saturation of all evaluation threads
- ✓ At each iteration particles change their position following three types of guides: the personal best position of the whole run, the position of the best particle in the neighborhood and the closest particle in the elite set.

The new MOPSO has shown **better results** than the previous version in all cases it was tested on.

Available in the Automatic and Manual mode.


PLORE DESIGN PERFECTION

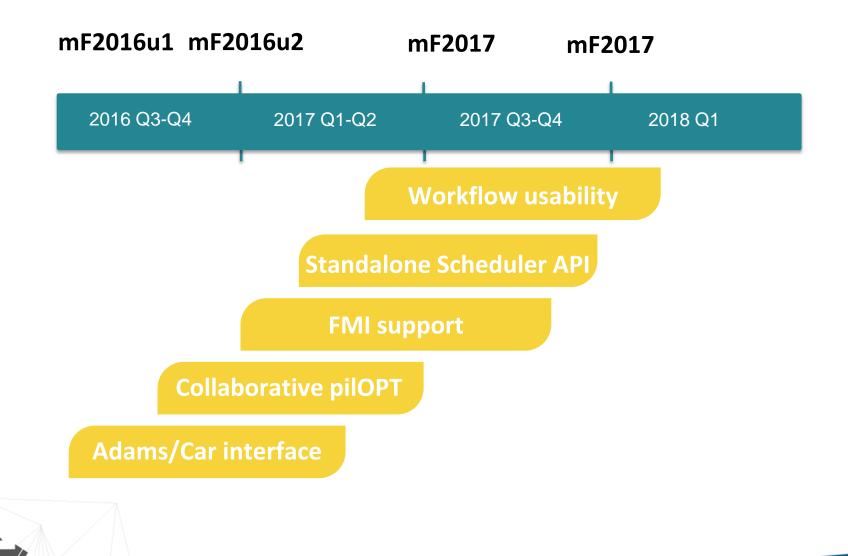
ME 2016 modeFRONTIER

Product roadmap

>> modeFRONTIER 2014-2016 transition

mF2014 \implies mF2016

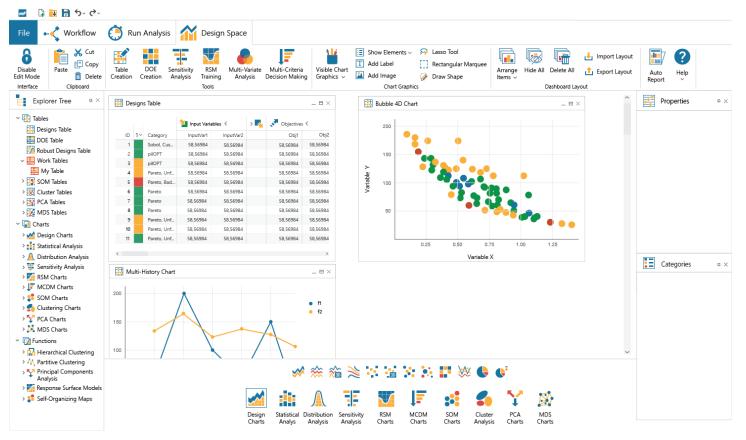
- ✓ mF2014 product line will be supported until end of 2017
- $\checkmark\,$ mF2014 compatible with mF2016 license files
- ✓ It will be possible to install mF2016 and mF2014 together on the same machine
- ✓ mF2016 will open mF4.5 (and mF2014) projects



The second secon

Product line

hodeFRONTIER 2016 development plan



modeFRONTIER

Looking forward

>> New Interface Design

- ✓ Contemporary Look & Feel and Color Uniformity
- ✓ Icons with clearer meanings
- \checkmark Consideration for usability issues
- Replacement of the old toolbar with a new one with larger icons and descriptions

Quick workflow building in one dialog:

- 1. Select the software you want to integrate (Search function available).
- 2. Choose a model file and Load the Parameters contained in it.
- 3. Use checkboxes to select the input and output parameters in the model you want to optimize with modeFRONTIER. You can also define the range of variation of inputs.
- 4. (Optional) Define the Objectives and Constraints
- 5. You can then close the wizard and go to the workflow or click Optimize and at once start the project execution.

Select the software you want to integrate								
	with modeFRONTIER.							
Search software library								
		«						
	x 💹 😵 😤	24	🔲 🔮 🎚	J ST	7 🗟			
Processing Application Scri	t CAD CAE Networking	Catia	Creo NX Solia	dWorks SolidV	Vorks Space	laim		
Nodes Nodes Nod	es Nodes Nodes Nodes	> Pa	rametric	Fla Simul	w ation			
		1						
2. Configure Catia Node Properties 🤟								
Choose the model file you want to optim	ize and load the parameters contained within.							
Configuration Options								
Node Name	Load	Open CAT	A					
Model File	Parame	ters Model						
3. Create Variables 🗸								
Select the input and output parameters	in your model you want to optimize and define their rang	es of variation.						
		7						
Expand Tree Collapse Tree Relo	d Parameters Filter Parameters Link All Un	link All						
Inputs Outputs	Search parameters Ne	đ						
~ InputFolder								
InputParameter	Input Variable editable name	Lower Bound -1.000.00	Upper Bound 1,000.00	Base	Step			
Input arameter	Input Variable editable name	-1,000.00	1,000.00					
> InputFolder		«						
> InputFolder								
InputFolder								
InputParameter	Input Variable editable name							
InputParameter	Input Variable editable name Input Variable editable name	-1,000.00	1,000.00					
InputParameter			1,000.00					
InputParameter								
InputParameter InputParameter InputParameter	Input Variable editable name	» -1,000.00	1,000.00					
InputParameter InputParameter InputParameter	Input Variable editable name	» -1,000.00	1,000.00					

登陆<u>www.idaj.cn</u>申请试用和资料

EXPLORE DESIGN PERFECTION

You f V in