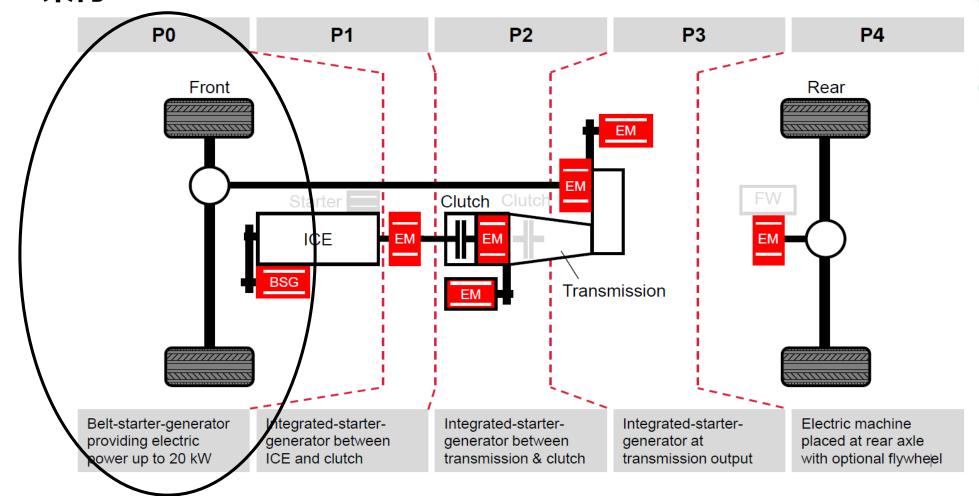


GT-suite 在P0混合动力计算中的应用

上汽商用车技术中心

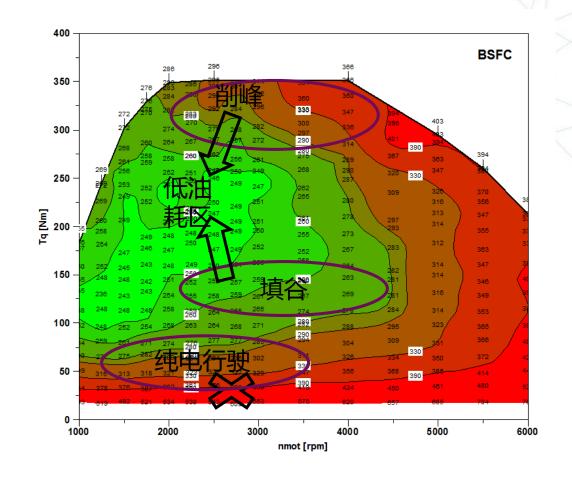
崔清章

- 1. P0 架构下的主要运行模式及原理
- 2. PO架构在GT-SUITE软件中的搭建
- 3. 基于某款车型的NEDC循环的计算
- 4. 基于发动机、电机的性能的分析
- 5. 结论



P0 架构下的主要运行模式及原理

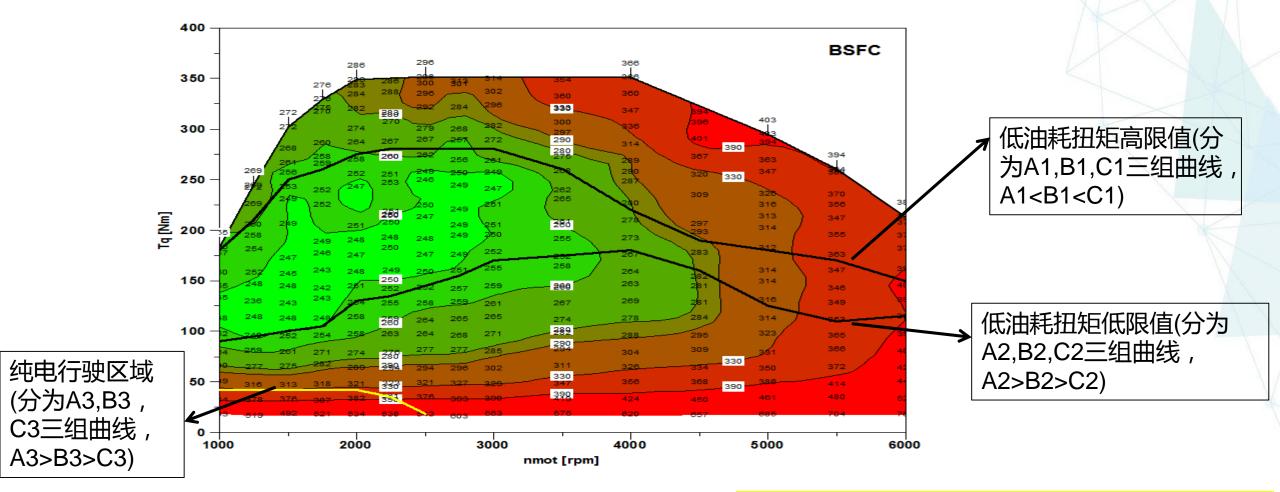
■P0 架构:



P0 架构下的主要运行模式及原理

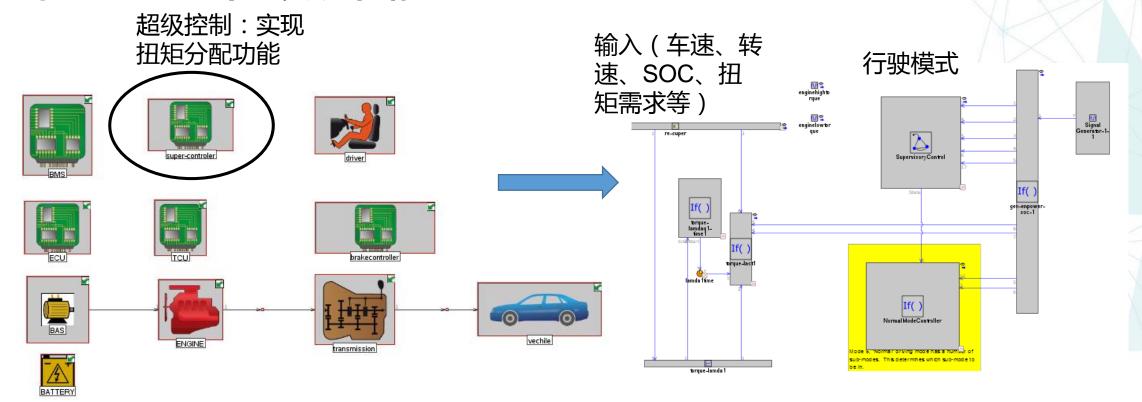
■ 传统理论研究下的P0架构的优势:优化发动机工况,降低油耗和排放:

- ✓舒适起停, 更平顺(进入怠速再喷油)。
- ✓大负荷需求时电机助力 , "**削峰**" 优化发动机工况。
- ✓小负荷需求时智能充电 , "**填谷**" 优化发动机工况。
- ✓低速低负荷工况纯电驱动,维持发动机断油。
- ✓制动能量回收,将部分制动能量通过电机 发电回收,减少制动盘摩擦损失。



P0架构在GT-SUITE软件中的搭建

■P0 在GT-SUITE中的原理:



PO架构在GT-SUITE软件中的搭建

■P0 在GT-SUITE中的实现策略一:

计算输出控制

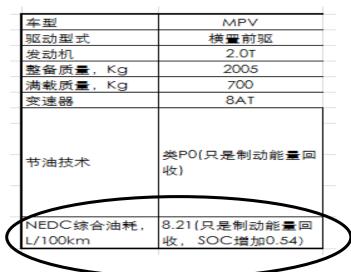
P0架构在GT-SUITE软件中的搭建

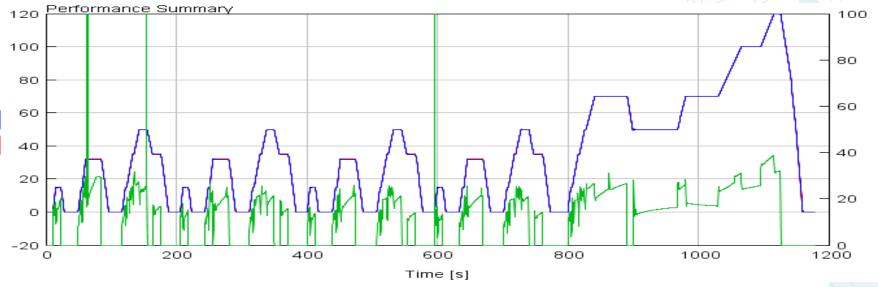
■P0 在GT-SUITE中的实现策略二:

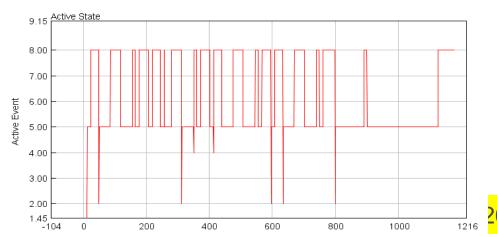
行驶模式:

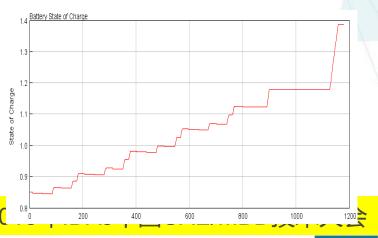
行驶模式	运行模式描述
model-1	整车停车停机
model-2	启动发动机
model-3	整车怠速,充电
model-4	整车运行,充电(填谷)
model-5	整车运行,不充电
model-6	整车运行,电机助动 (削峰)
model-7	纯电行驶
model-8	制动能量回收

行驶模式控制:

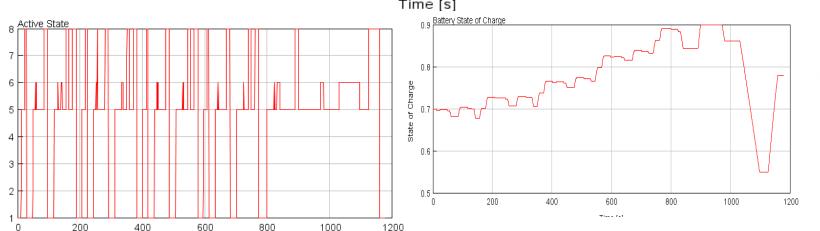

SOC 扭矩(Nm)	SOC<=SOC _{low2}	SOC _{low2} <=SOC<=SOC _{low1}	SOC _{low1} <=SOC<=SOC _{high1}	SOC _{high1} <=SOC<=SOC _{high2}	SOChi _{gh2} <=SOC
TT<0	model-8 or model-9	model-8 or model-9	model-8 or model-9	model-8 or model-9	model-8
TT=0	model-3	model-3	/	/	/
O< TT <=Tmotor	model-4	model-7	model-7	model-7	model-7
Tmotor <tt<=tlow< td=""><td>model-4</td><td>model-4</td><td>model-4</td><td>model-4</td><td>model-5</td></tt<=tlow<>	model-4	model-4	model-4	model-4	model-5
Tlow< TT <=Thigh	model-5	model-5	model-5	model-5	model-5
Thight< TT	model-5	model-6	model-6	model-6	model-6






■某款车型的NEDC计算结果一(只有制动能量回收功能):

行驶模式	运行模式描述
model-1	整车停车停机
model-2	启动发动机
model-3	整车怠速,充电
model-4	整车运行,充电(填谷)
model-5	整车运行,不充电
model-6	整车运行,电机助动 (削峰)
model-7	纯电行驶
model-8	制动能量回收



■某款车型的NEDC计算结果二(制动能量回收功能+电量平衡):

车型	MPV
驱动型式	横置前驱
发动机	2.0T
整备质量,Kg	2005
满载质量,Kg	700
变速器	8AT
节油技术	类P0(只是制动能量回收)
NEDC综合油耗,	7.85(只是制动能量回收,并增加电量
L/100km	平衡控制)

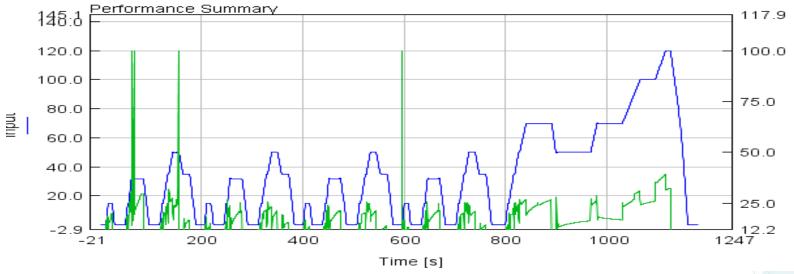
	120	Perfo	rmance	Su	mmary									100
													/\	100
	100	_											\mathcal{T}^{\prime}	- 80
	80	_											/	
	60												<u> </u>	60
Input						Λ		Λ		Λ	/ L			
Ξ.	40		5 /	5		/ \		75		/ \	1			- 40
	20		/\ /h	+	- 11	1. \	n / \	1.	L .	1.	14 4	и	11	
	0			иL		MIL		44.1			MAC			- 20
		ז ויון	['		M M I	1 11	ויזות	1 11	MIT	M. I.I.	" [
	-20)		20	00	40	00		00	8	00	1000)	0 1200
									ie [s]					

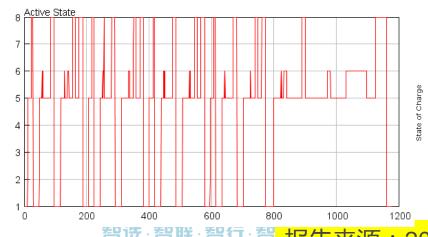
智选·智联·智行·智

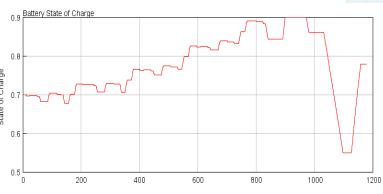
报告来源:2019年IDAJ中国CAE/MBD技术大会

2019/11/29

Pedal Positions



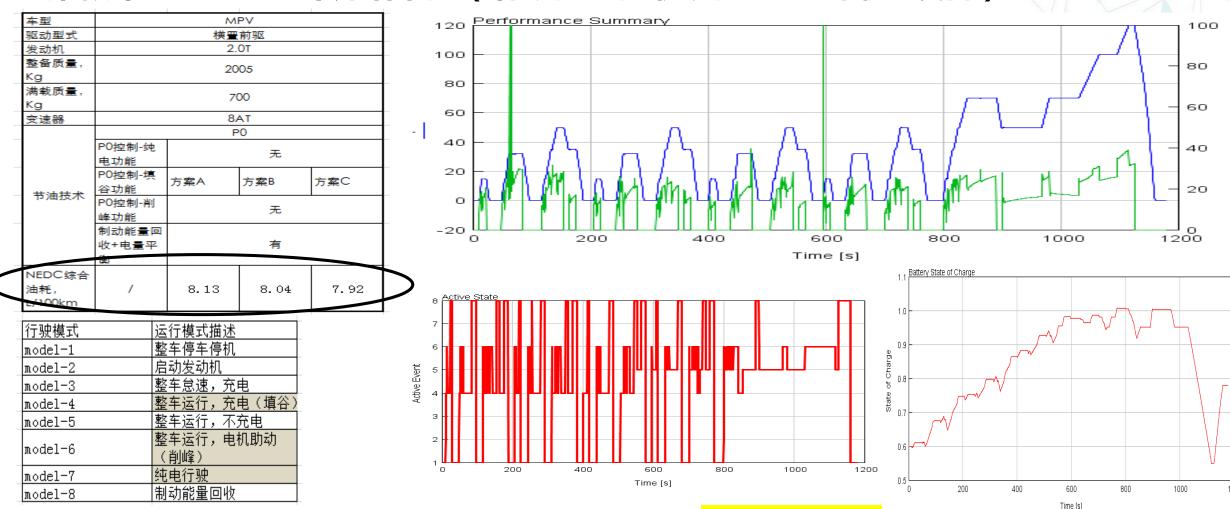



■某款车型的NEDC计算结果三(制动能量回收功能+电量平衡+削峰):

车型	MPV						
驱动型式		横置前	<u> 30</u>				
发动机		2.0T					
整备质量,Kg		2005	;				
满载质量,Kg		700					
变速器		TA8					
		P0	•				
	P0控制-纯电功	_					
	能	无					
	P0控制-填谷功	控制-填谷功 无					
节油技术	能	7.					
	P0控制-削峰功	方案A	方案B	方案C			
	能	カ乗へ	刀乗り	万乗り	L		
	制动能量回收+	制动能量回收+ 有					
	电量平衡		Ħ				
NEDC综合油耗,							
NEDC録音油程, L/100km	/	7.86	7.86	7.8	Ι.		
L/TOOKITI							

行驶模式	运行模式描述
model-1	整车停车停机
model-2	启动发动机
model-3	整车怠速,充电
model-4	整车运行,充电(填谷)
model-5	整车运行,不充电
model-6	整车运行,电机助动 (削峰)
model-7	纯电行驶
model-8	制动能量回收

問題·智琳·智行·智 报告来源:2019年IDAJ中国CAE/MBD技术大会


2019/11/29

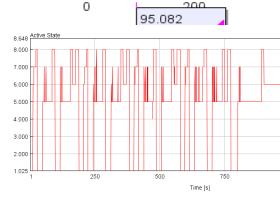
■某款车型的NEDC计算结果四(制动能量回收功能+电量平衡+填谷):

2019/11/29

选·智联·智行·智 报告来源:2019年IDAJ中国CAE/MBD技术大会

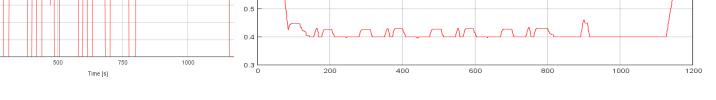
80

■某款车型的NEDC计算结果五(制动能量回收功能+电量平衡+纯电行驶)


100

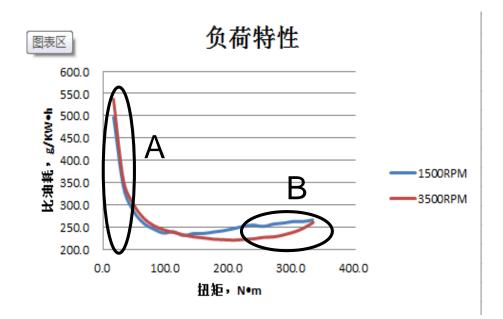

80

60

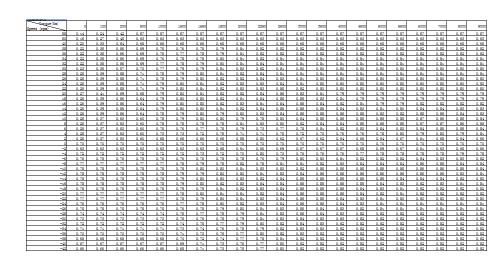

74645

-20

基于发动机、电机性能的分析


VS

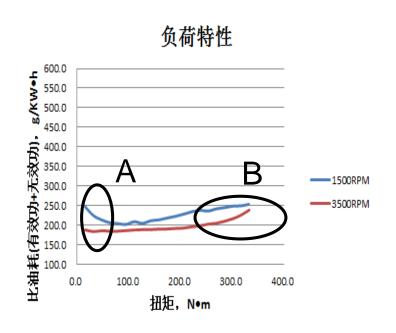
发动机摩擦扭矩:


转速	倒拖扭矩
1000	14.1
1500	16.0
2000	19.0
2500	21.4
3000	25.1
3500	29.4
4000	34.3
4500	40.1
5000	47.2
5500	51.9
6000	55.5
6500	62.7

■发动机、电机特性一:

传统PO控制:A区和B区属于高油耗区,需要填谷和削峰。

电机的效率(<85%):



基于发动机、电机性能的分析

■发动机、电机特性二:

一:考虑到摩擦功, A区的 燃油耗的恶化不大。 发电机的发电效率 85% * 电动机的机械 效率85%=72%

二:因为电量平衡的需求,考虑发电机与电机的效率损失28% > 20%~25%,从这个方面考虑,在A区和B区引入电机工作,燃油耗是增加的。

结论

■针对P0架构主要的节油功能:

- ✓大负荷需求时电机助力 , "削峰" 优化发动机工况。——在当前的电机效率下 , 综合考虑节油效果不佳。
- ✓小负荷需求时智能充电,"**填谷**"优化发动机工况。——在当前的电机效率下,综合考虑节油效果不佳。
- ✔低速低负荷工况纯电驱动,维持发动机断油。——在当前的电机效率下,综合考虑节油效果不佳。
- ✓制动能量回收,将部分制动能量通过电机发电回收,减少制动盘摩擦损失。——通过制动能量回收, 降低整车油耗。

