IDAJ CAE Solution Conference 2019

Successful stories with ESTECO Technologies

31楼景观宴会厅 C5 16:10 - 16:40

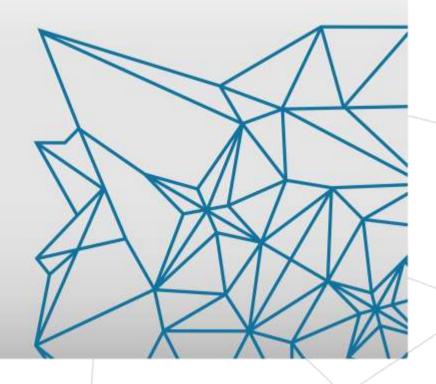
Zhongli Wen

20th >> 21th NOV 2019 >> Shanghai, China

Our Products

DESKTOP PLATFORM

modeFRONTIER



Process automation and optimization of the engineering design process

WEB PLATFORM

Multidisciplinary business process optimization and enterprise simulation data management

modeFRONTIER

Automate simulations within a single workflow

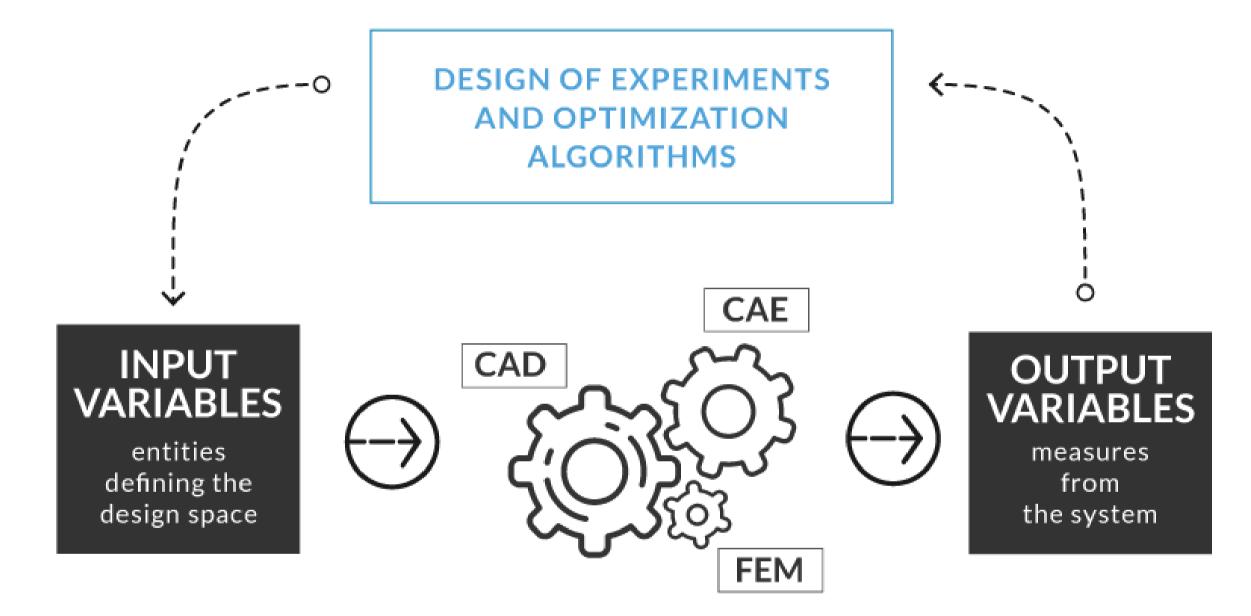
Seamless integration with engineering solvers

Turn uncertainties into well-performing products

Gain better understanding of the design space <u> </u>

Make better decisions with data analysis and visualization tools

Optimization-Driven Design



Input Variables Define design domain

Black Box Computes outputs based on inputs

Output Variables Measure the system response

Types of Parametric Input Variables

Continuous variables:

- Point coordinates
- Process variables
- Dimensions or shape variables

225mm

Discrete variables:

- Components from a catalog
- Material selection

235mm

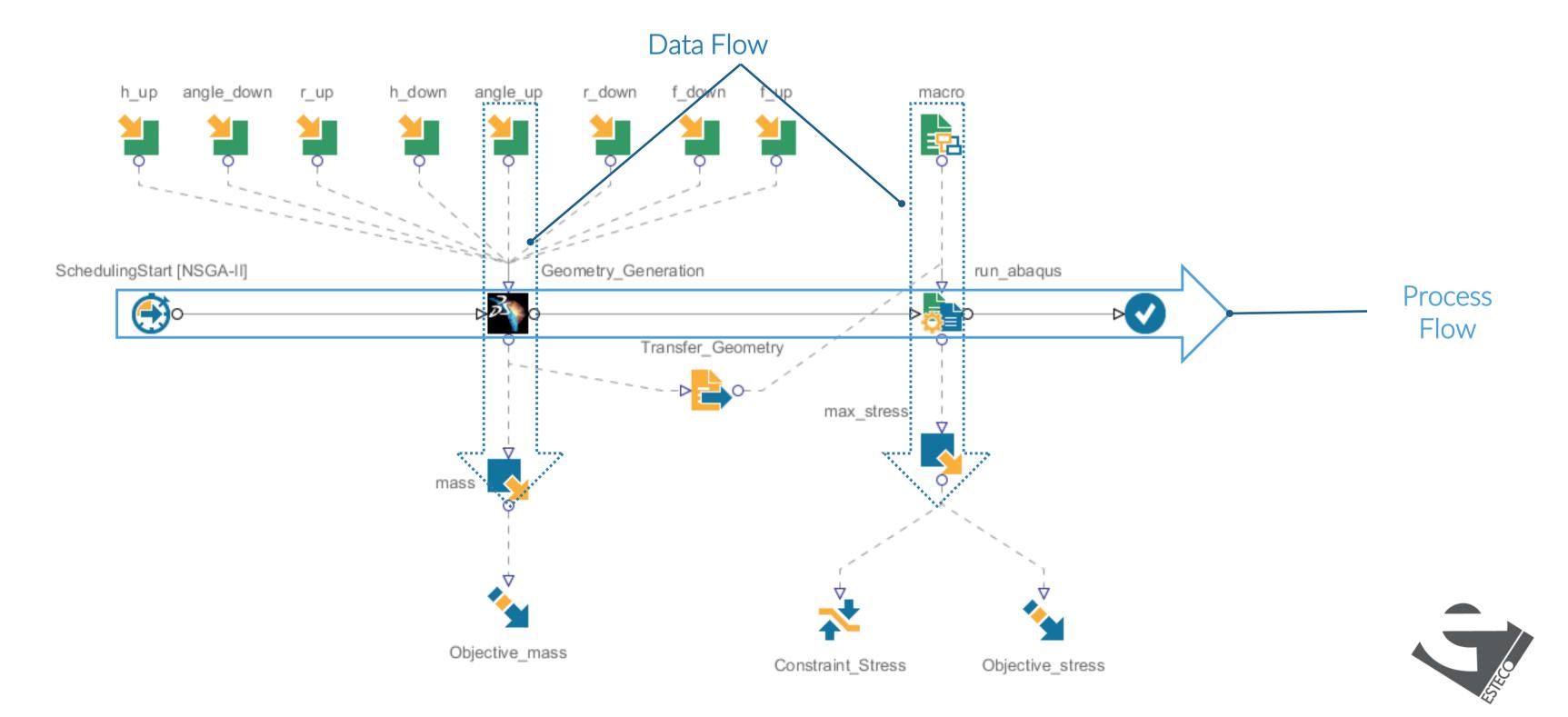
Our Technical Partners

Seamless integration at hand

Our solutions are fully integrated with the most commonly used engineering tools

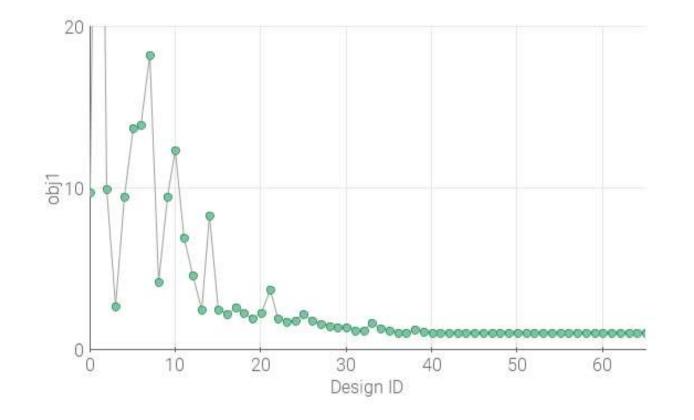
Workflow: Process Automation

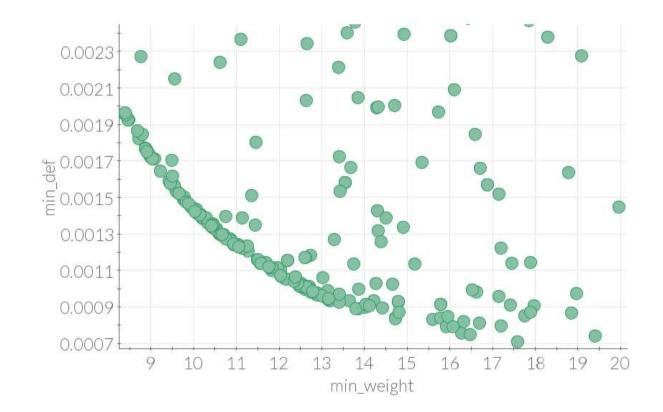
Combines Process Flow and Data Flow



Single vs. Multi-Objective

Single-objective





Converge to only **one** optimal solution

Multi-objective

There is a set of equivalent optimal solutions called the Pareto frontier

Aerodynamic Optimization of a Wide Body Train Front

Bombardier Transportation

BOMBARDIER

Reduced 20% aerodynamic drag and energy consumption by 10%

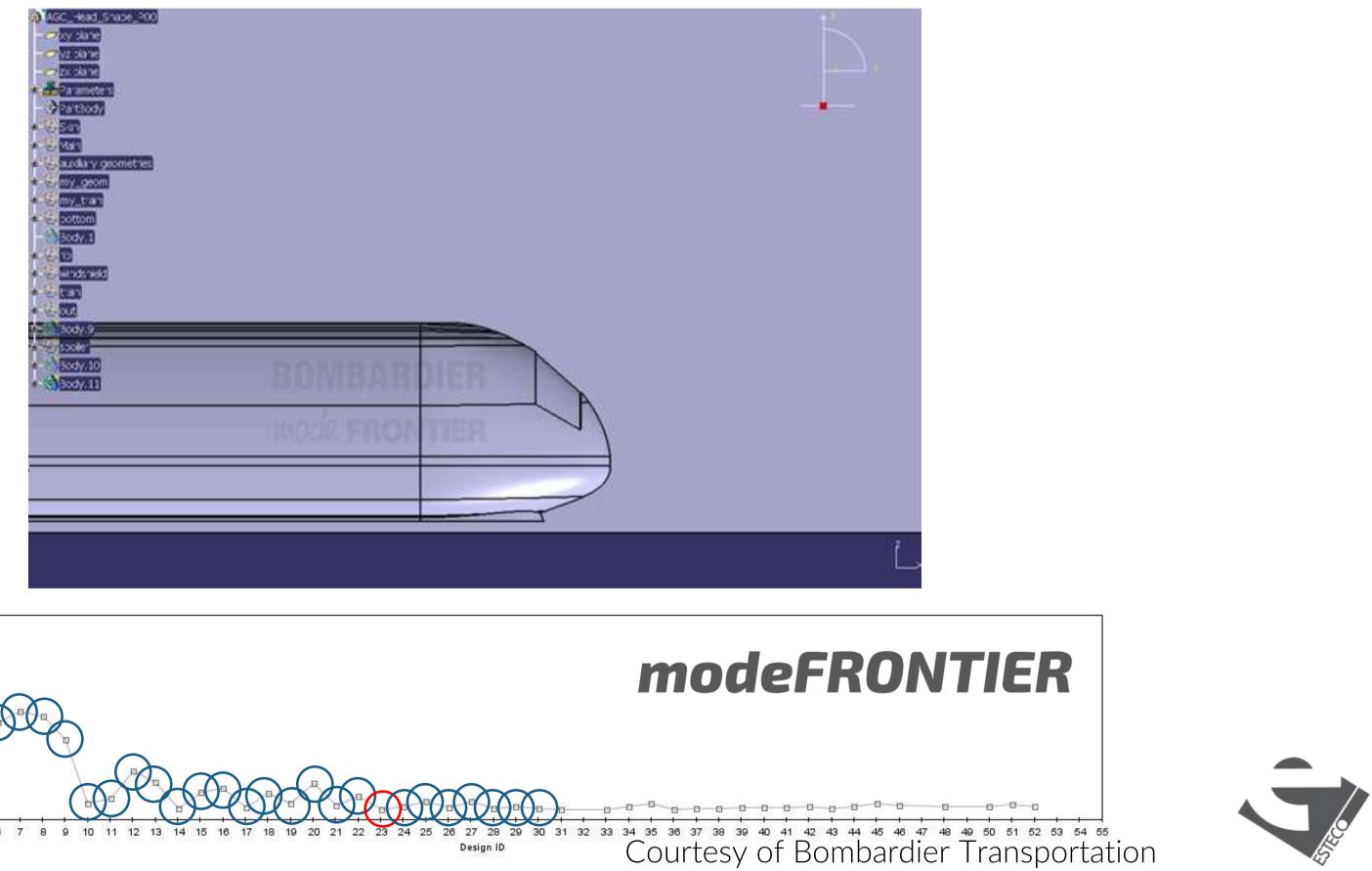
"Wind tunnel tests of the shape produced by the modeFRONTIER optimization confirmed that it was one of the best we had seen. Based on this result, Bombardier Transportation now uses modeFRONTIER to drive the analysis tools for all our aerodynamics projects "

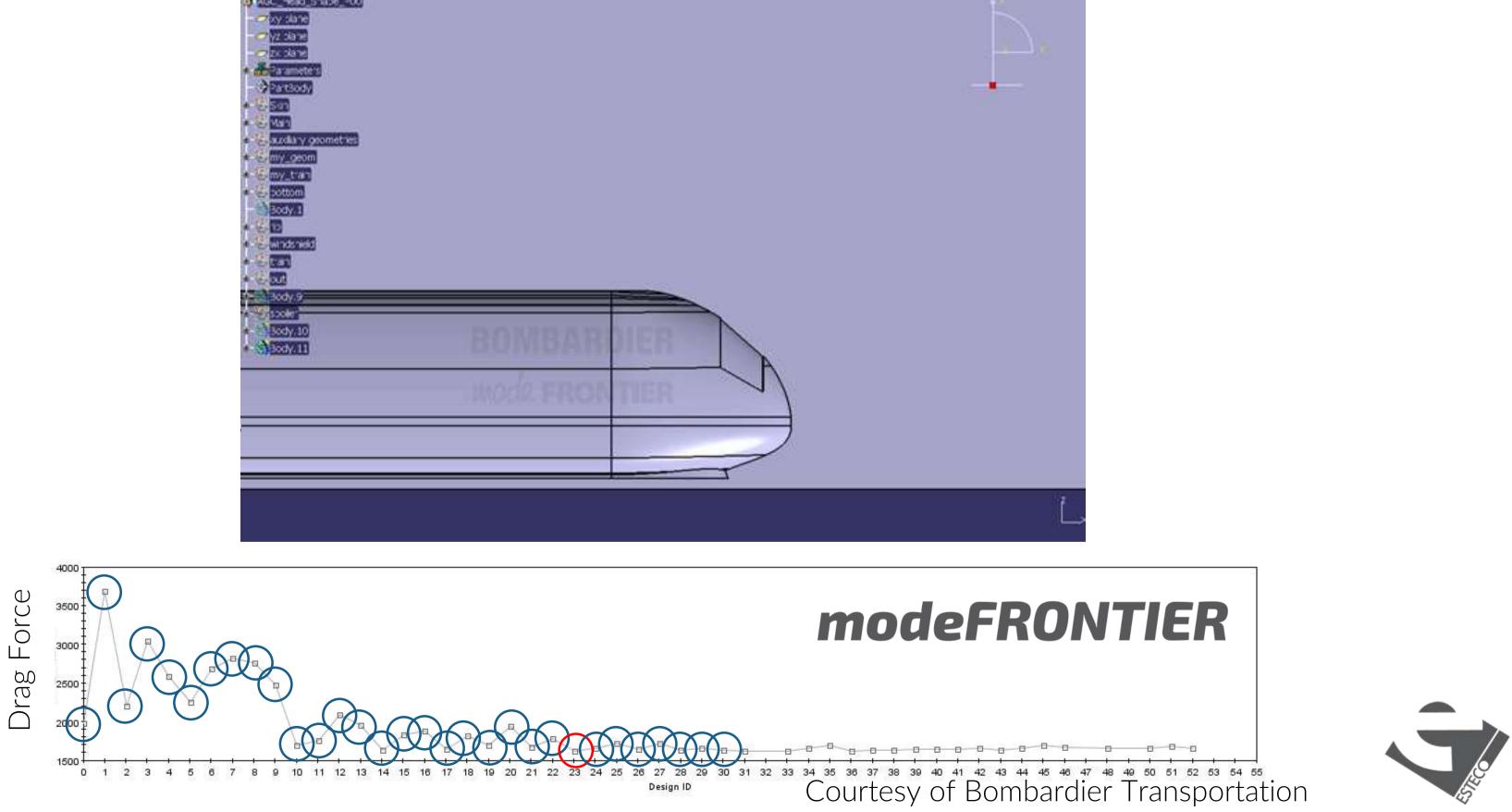
DR ALEXANDER ORELLANO Head of Aerodynamics

Reducing Energy Consumption of Bombardier Trains

- 1. Create a parametric train model with CATIA V5 - 10 geometric parameters
- 2. CFD simulation (STAR CCM+)
- 3. Incorporate model in automatic optimization loop
- 4. Minimize drag

Reducing Energy Consumption of Bombardier Trains

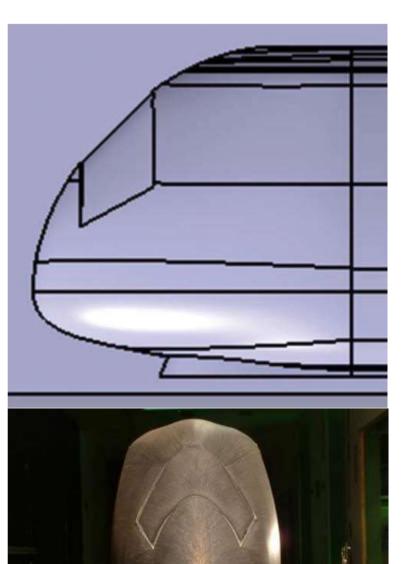




Reducing Energy Consumption of Bombardier Trains

Wind tunnel tests confirmed optimization results

Benefit: optimization resulted in faster design process along with significant reduction in the use of expensive wind tunnel testing



Courtesy of Bombardier Transportation

Introduction

Understand global correlations between geometric parameters and CFD performances. Give inputs to future train design to reduce energy consumption and maximize safety.

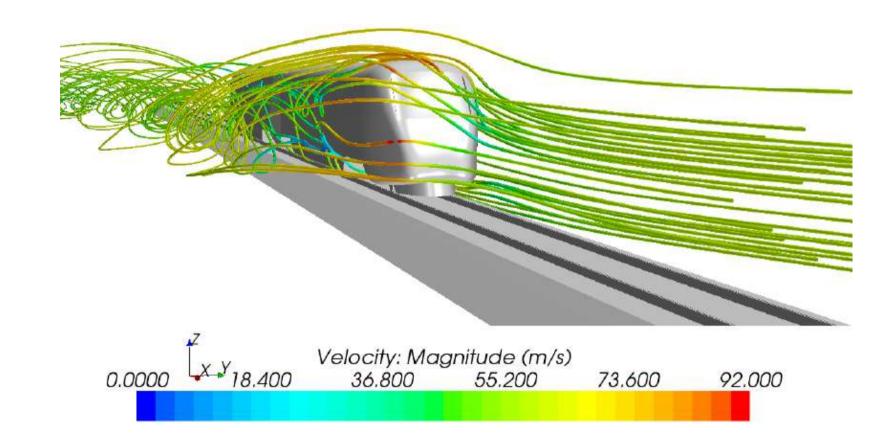
Regulations and Fluidynamics

Regulation constraints:

- Head Pressure Pulse (HPP) less than 800Pa
- Crosswind Stability (CWS)

Fluidynamics performances:

Drag

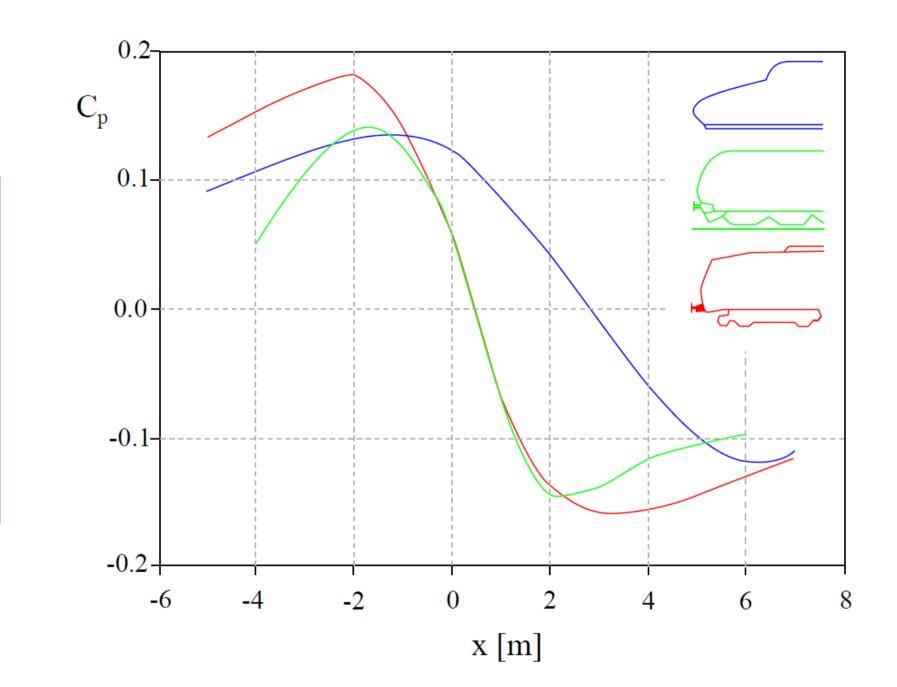


Streamline visualization of velocity field around the train in crosswind

Head Pressure Pulse

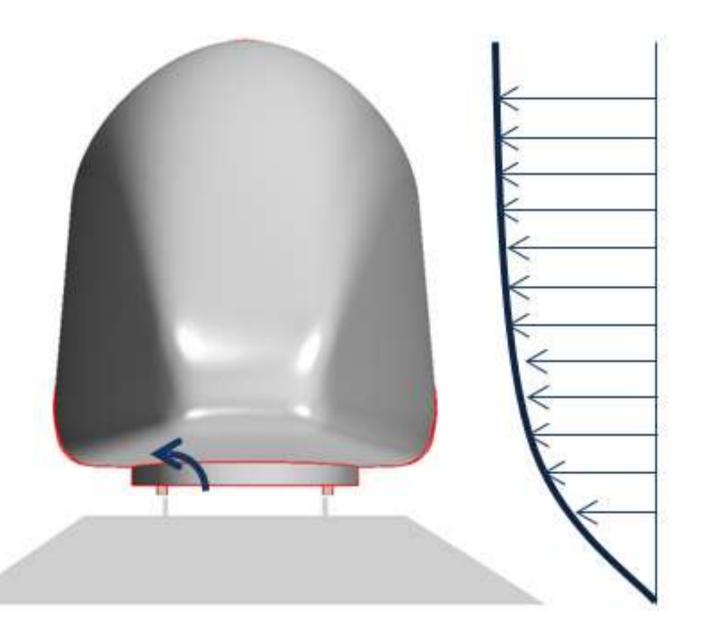
It is the Pressure Pulse caused by a moving train.

- Different nose shapes have different HPP values
- For a given shape limit the HPP means speed limit



Crosswind Stability

Stability is fundamental for safety: lateral winds can cause the train to roll over leeward rail.



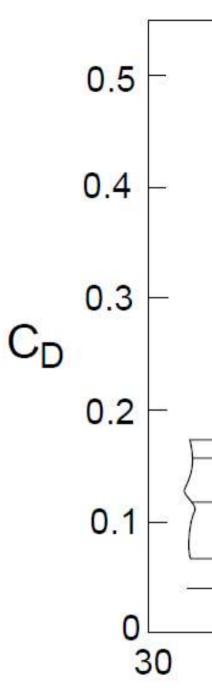
x y

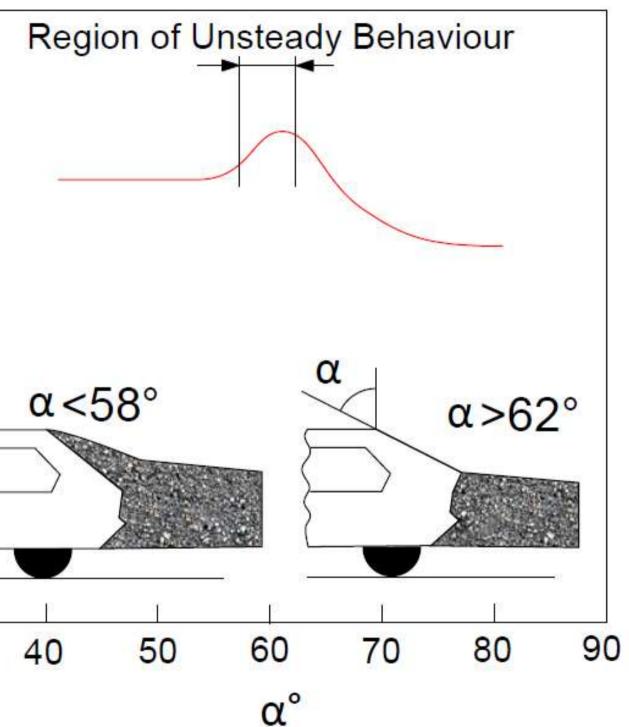
Drag

Reduce drag to reduce energy consumption.

Two different behaviors at tail:

- flow stays attached for α>62°
- flow detaches for α<58°
- Unsteady behavior for 58°< α<62°



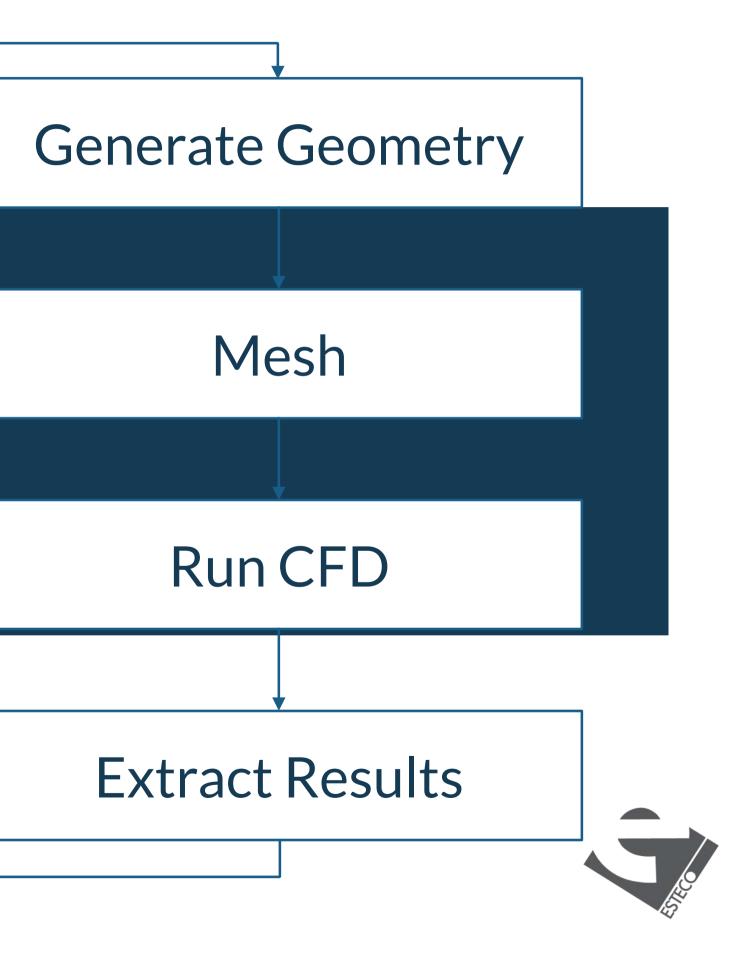


modeFRONTIER Workflow

modeFRONTIER allows the coupling with:

- CAD software for geometry generation
- CFD software for Mesh generation and CFD solution

It automates the run process and optimization run.



Optimization Results

First Uniform Latin Hypercube DOE is run to spot correlation between inputs and outputs.

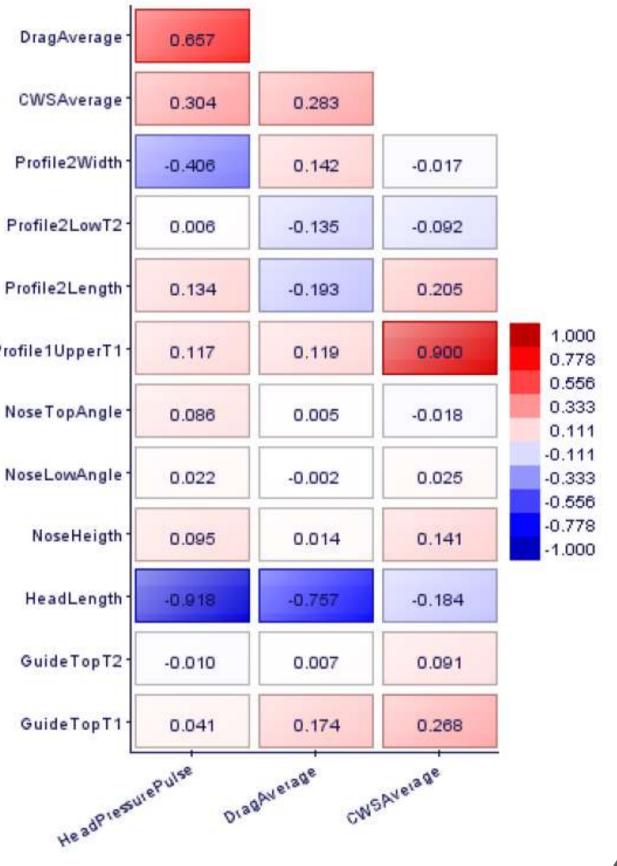
Most important correlations:

- The rounder the roof the higher the CWS
- The longer the nose the lower the HPP and Drag

Profile2Length

Profile1UpperT1

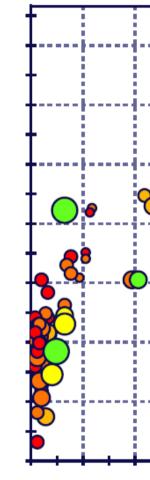
NoseLowAngle



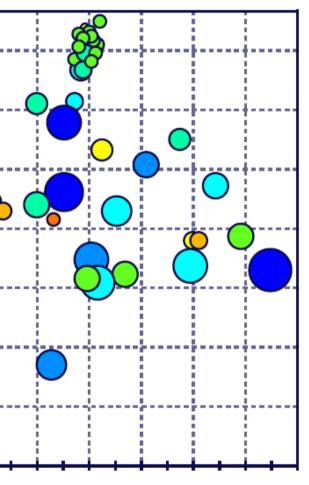
Optimization Results

FAST multi strategy: 200 designs evaluation.

Algorithm finds the Pareto frontier.

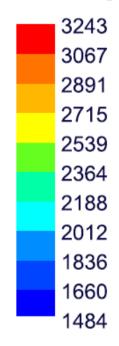


DragAverage



CWSAverage

TOTALlength



HeadPressure[...] (Diameter) Min = 2.7482E-1 Max = 3.6591E-1

Best Train Shapes

Comparison with Bombardier regional train

Best Crosswind Stability. 20% less than production train Best Drag: 7% less than production train

Best Head Pressure Pulse behavior.

Summary

Best drag:

- Higher nose for less turbulent wake
- Drag reduction of 7% with respect to production train

Best HPP:

Longer noses

Best CrossWind Stability:

- Sharp angles on the nose upper part
- Sloping and flat noses
- 20% better stability with respect to production train

Using Deep Learning in electric motor optimization Esteco & University of Trieste

UNIVERSITÀ DEGLI STUDI DI TRIESTE Dipartimento di Ingegneria e Architettura

Corso di laurea in Ingegneria Elettronica e Informatica

Applicazione di reti neurali nella progettazione di componenti per l'industria automobilistica

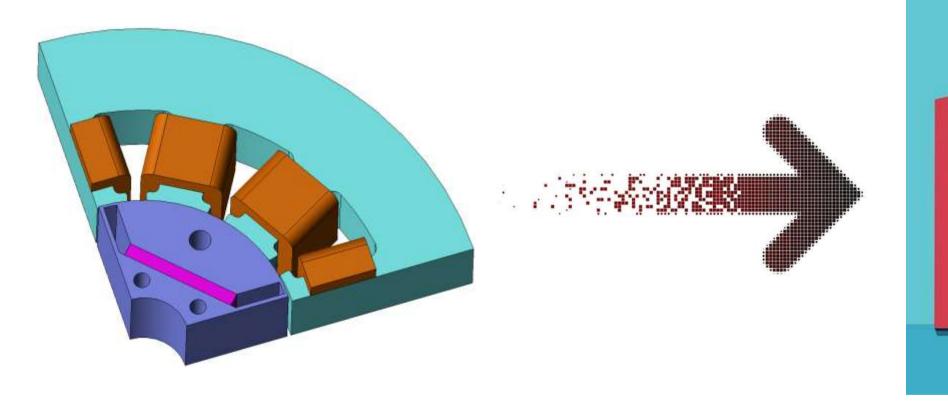
Tesi di laurea magistrale

Laureando: Mattia De Bernardi Relatore: Prof. Gianni Ramponi

Correlatore: Ing. Livio Tenze

Electric motor optimization for NEVs development

Interior Permanent Magnet (IPM) Motor



Electric motor optimization for NEVs development

Optimization of an Interior Permanent Magnet (IPM) Motor

Challenge:

- Huge number of geometry configurations to explore
- Heavy computational simulations •

Solutions:

- Deep Learning approach using convolutional neural network (CNN) to analyze image and reduce simulations
- modeFRONTIER optimization platform to reach the optimal •

How Does The Human Eye Work?

OVERLAPPING FIELD OF VISION

RETINA

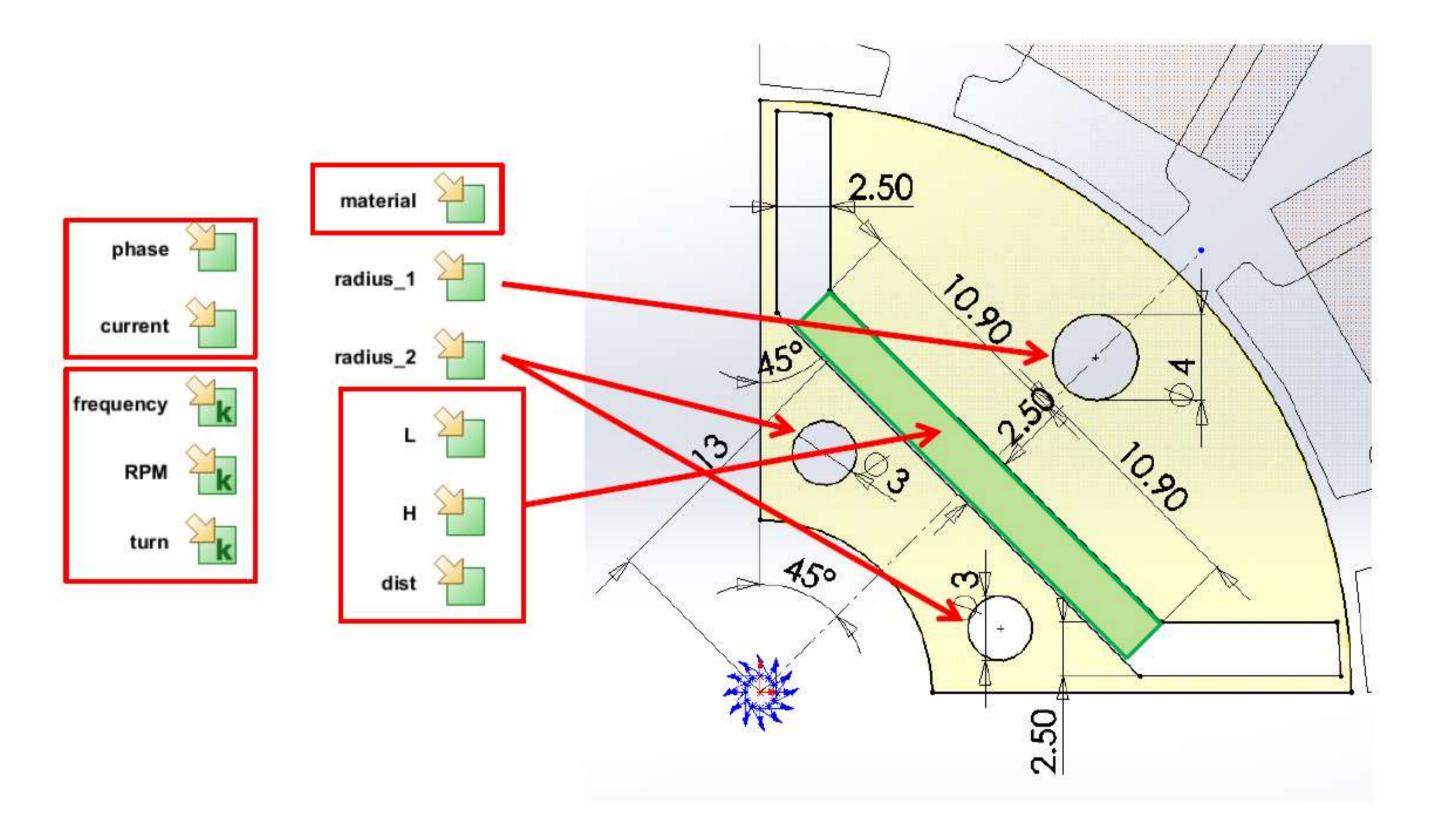
VISUAL CORTEX

Vision begins with the eyes, but truly takes place in the brain.

Problem descriptions

- Maximize the torque
- Minimize the geometry

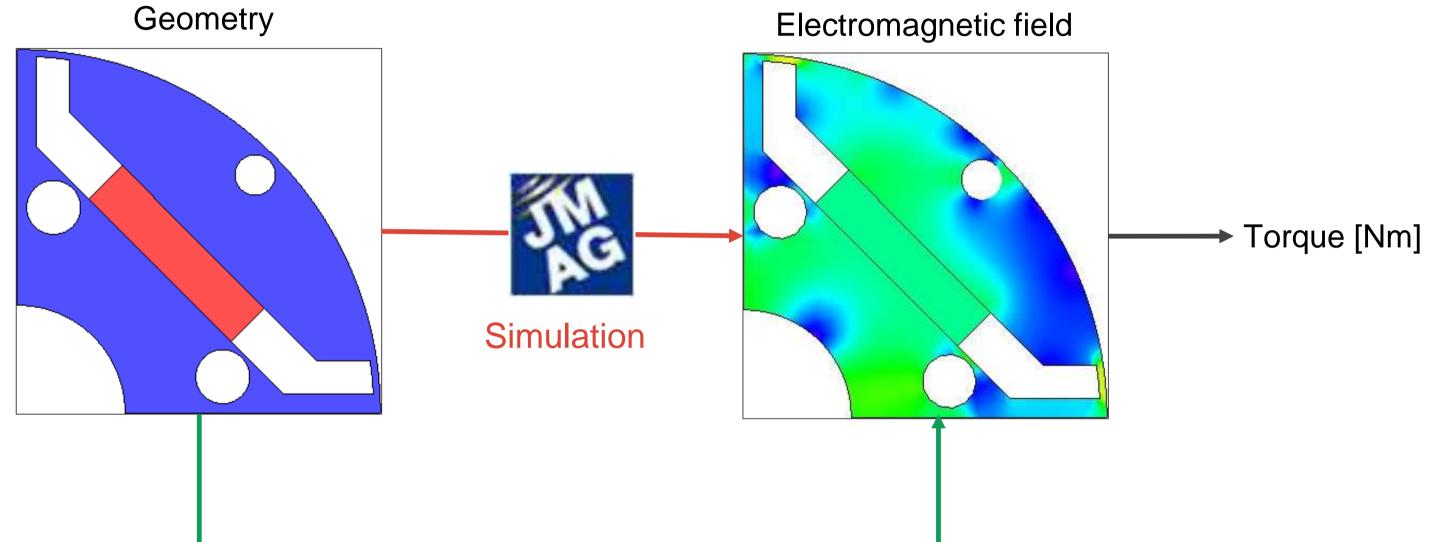
Rotor parametrization



Classification based on Torque value

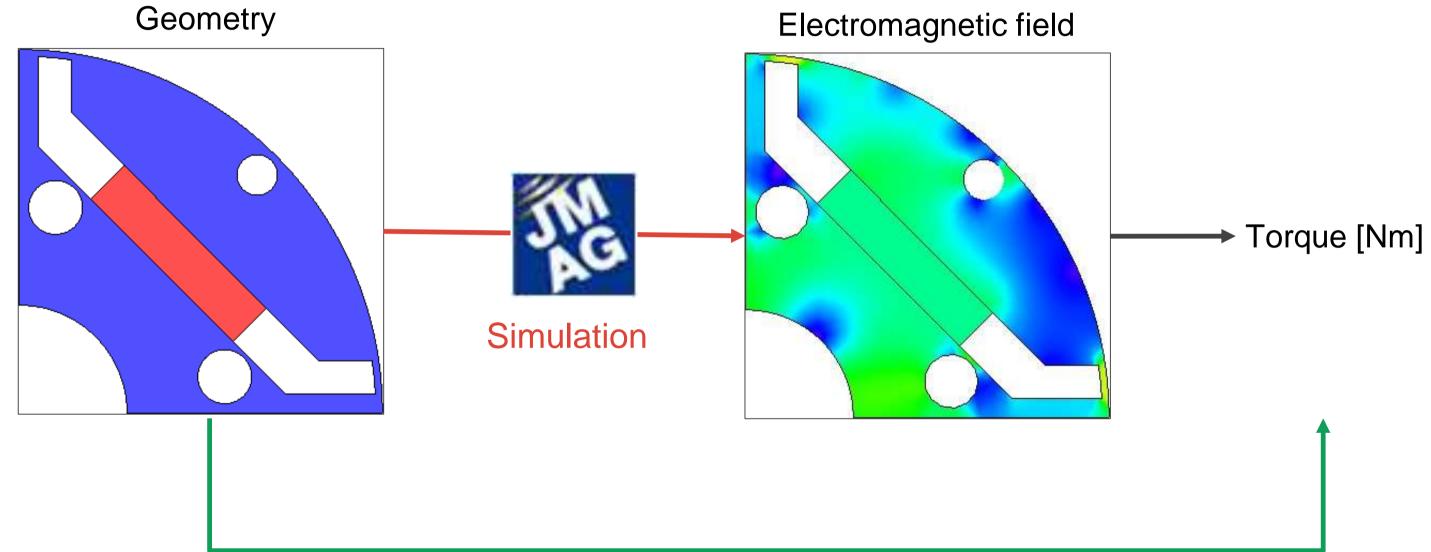
Coppia [N m]	Classe
< 0.02	0
0.02-0.04	1
0.04-0.06	2
0.06-0.08	3
0.08 - 0.10	4
0.10-0.12	5
0.12-0.14	6
>0.14	7

Deep Learning approach



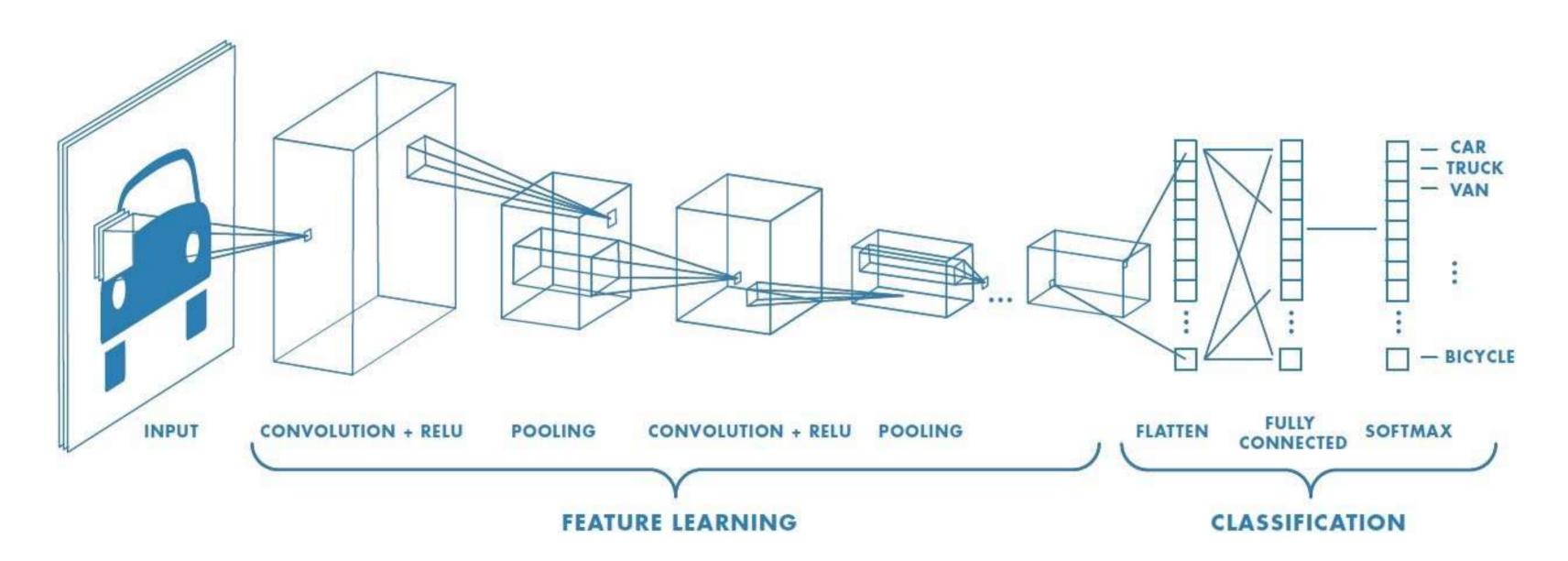
Convolutional neural network

Deep Learning approach



Convolutional neural network

Convolutional Neural Network



A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image and be able to differentiate one from the other.

How Does The CNN works

CNN goal is approximate an unknown function f^{*} with another function

y=f(x;W)

Neural Network optimize the weight W to minimize the loss function L and obtain the best approximation of the function f*

 $W = W - \epsilon g$

c is the learning rate g loss function gradient respect to W

CNN general architecture

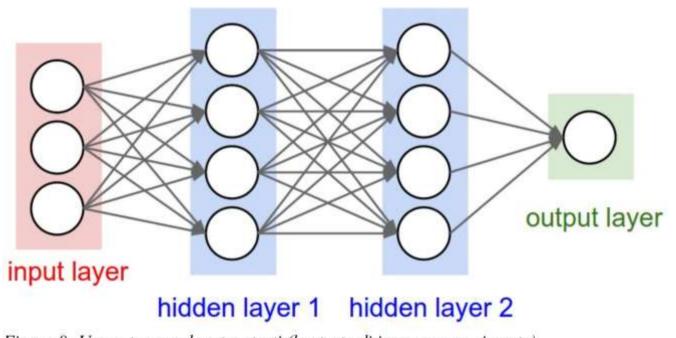
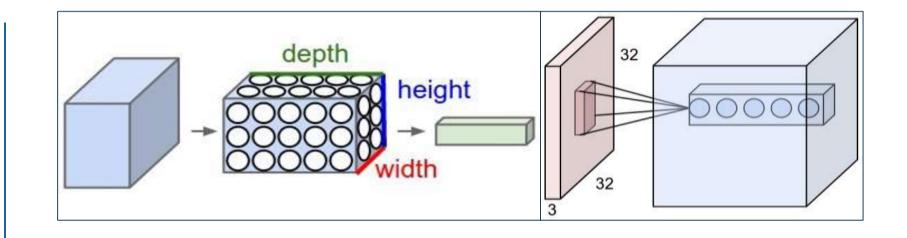


Figura 8: Una rete neurale a tre strati (lo strato di ingresso non si conta)



Fully connected layer

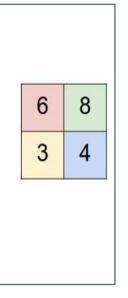
Convolutional layer

CNN general architecture

Convolutional neural network has different type of layer:

- Convolutional
- Fully connected
- Pooling
- Normalization

	Sing	gle d	epth	slice	
x	1	1	2	4	
	5	6	7	8	max pool with 2x2 filters and stride 2
	3	2	1	0	
	1	2	3	4	
				×	



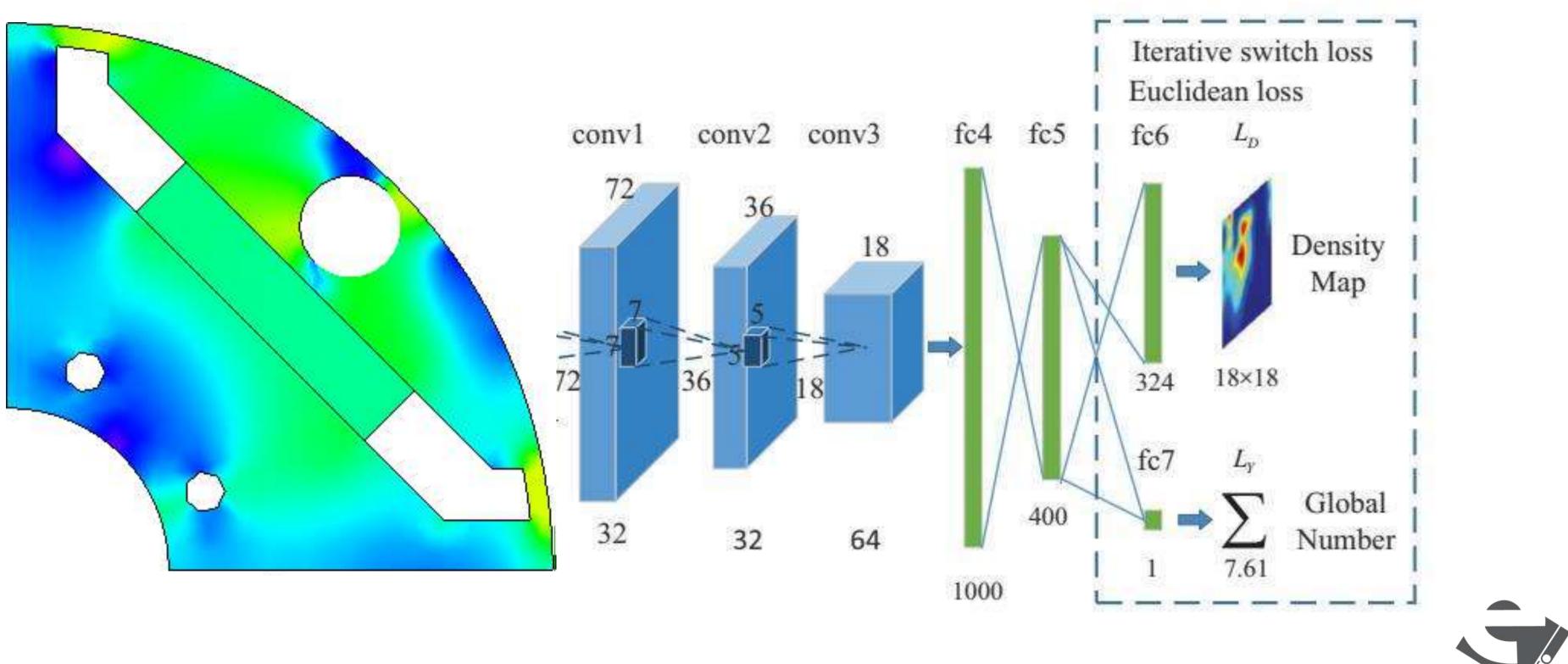
Different architecture and techniques

Various architectures of CNNs available:

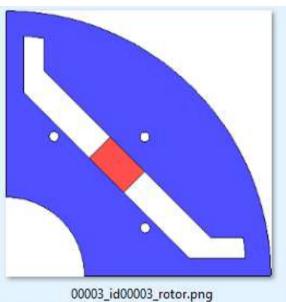
- 1. LeNet
- 2. AlexNet
- 3. VGGNet
- 4. GoogLeNet
- 5. ResNet
- 6. ZFNet

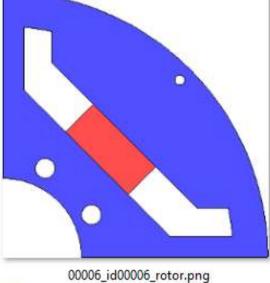
- 1. Decay learning rate 2. Early stopping 3. Data augmentation
- Learning techniques to improve performance:

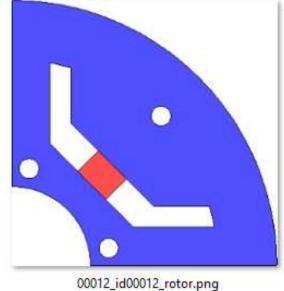
Learning Process

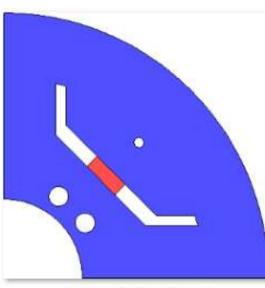


Learning Dataset





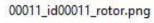


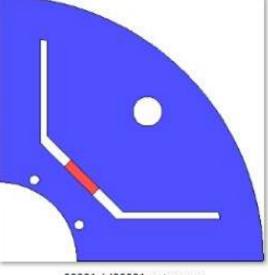


00002_id00002_rotor.png

00005_id00005_rotor.png

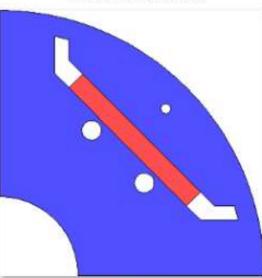




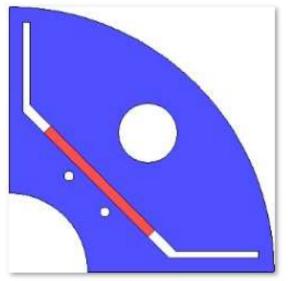


00001_id00001_rotor.png

00005_id00004_rotor.png



00010_id00010_rotor.png



00000_id00000_rotor.png

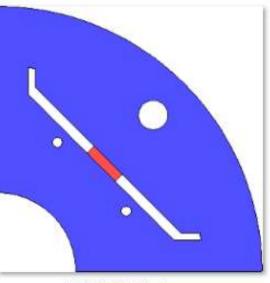


00004_id00005_rotor.png

00009_id00009_rotor.png

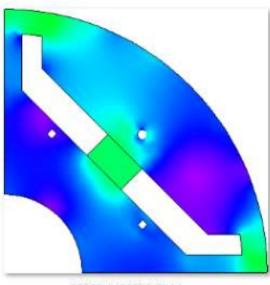
00004_id00004_rotor.png

00007_id00007_rotor.png

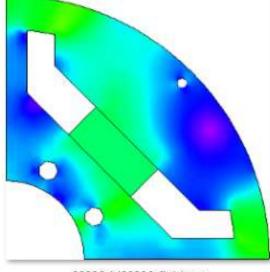


00013_id00013_rotor.png

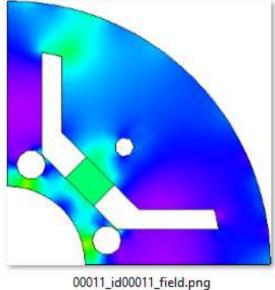
Learning Dataset

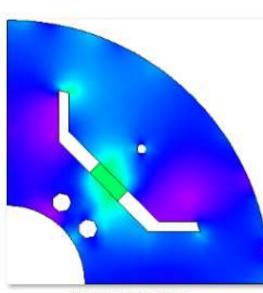


00003_id00003_field.png

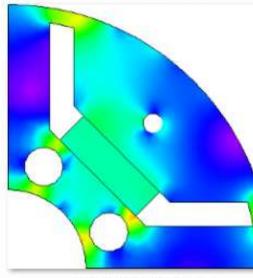


00006_id00006_field.png

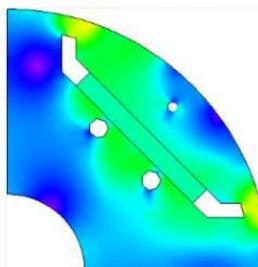


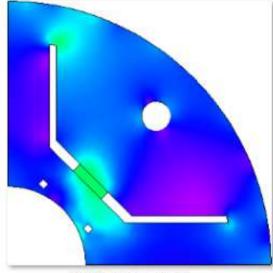


00002_id00002_field.png

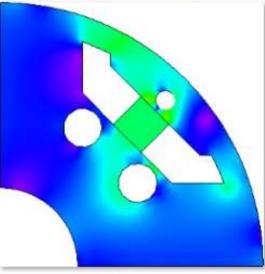


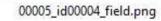
00005_id00005_field.png

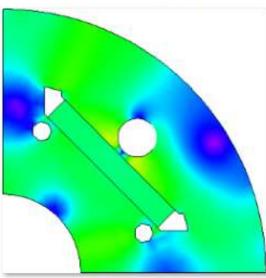




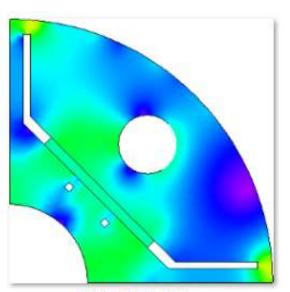
00001_id00001_field.png



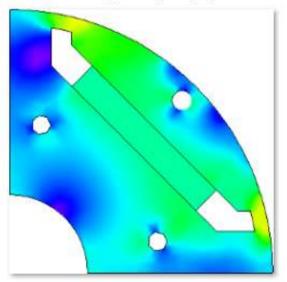




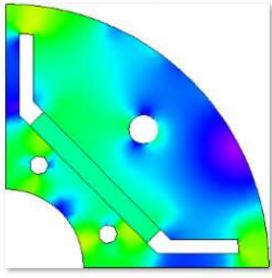
00009_id00009_field.png



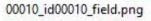
00000_id00000_field.png

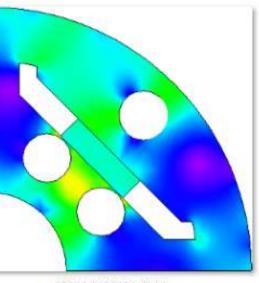


00004_id00005_field.png

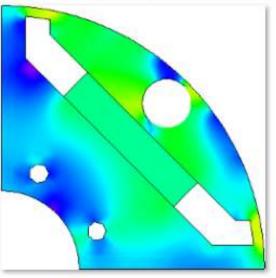


00008_id00008_field.png

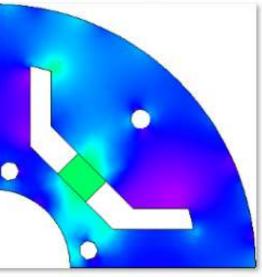




00004_id00004_field.png



00007_id00007_field.png



00012_id00012_field.png

Image preprocessing

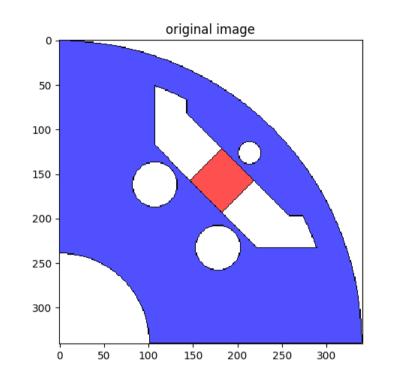
Image preprocessing improve CNN accuracy and speed up loss function convergence

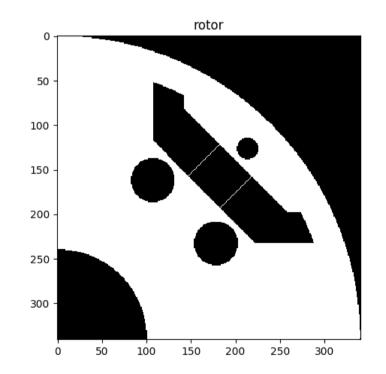
Different image preprocessing are used:

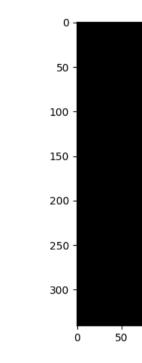
- 1. Image centering e normalization
- 2. Color segmentation
- 3. Part segmentation

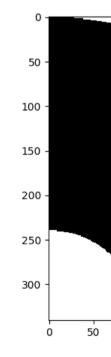
The 1st is a general technique for image processing while the other two are specific techniques for electric motor

Color Segmentation



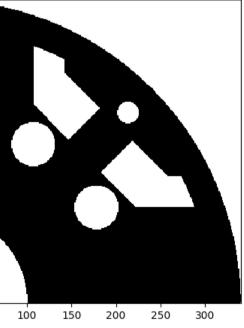




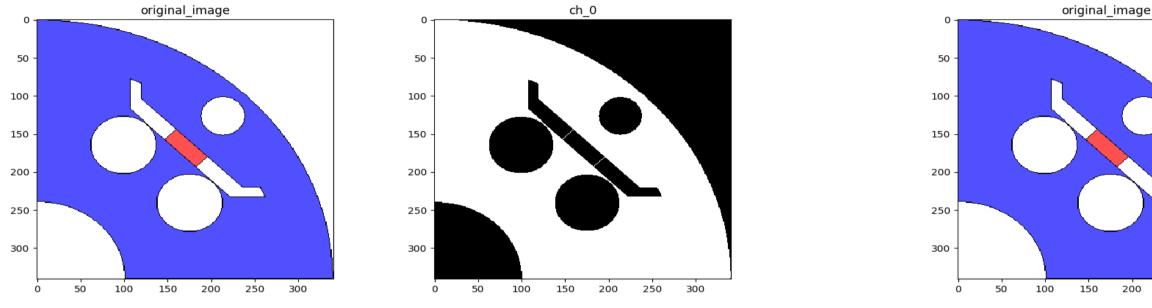


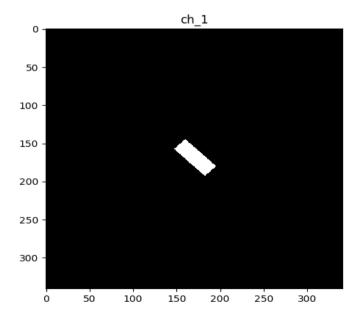
magnet

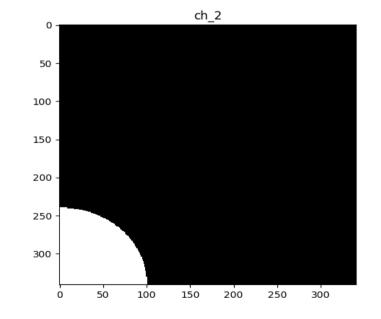
white_pieces

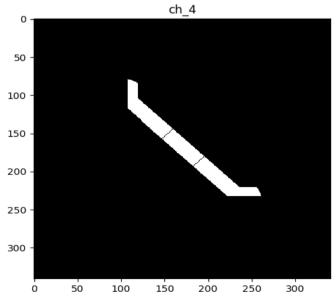


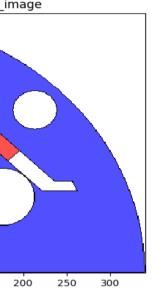
Part Segmentation

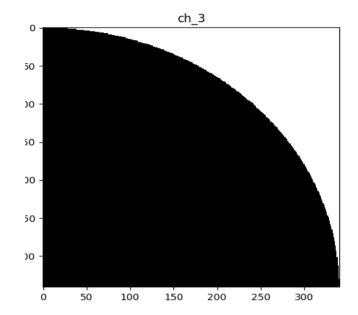












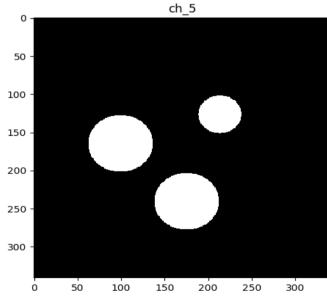
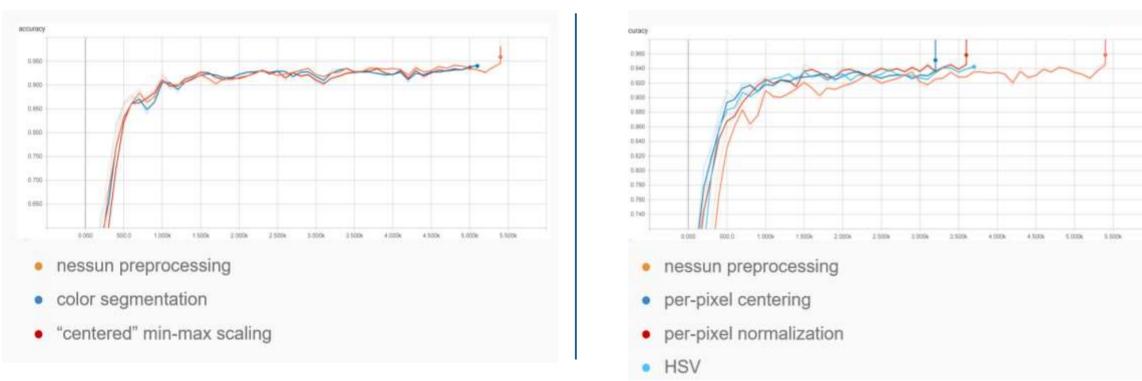
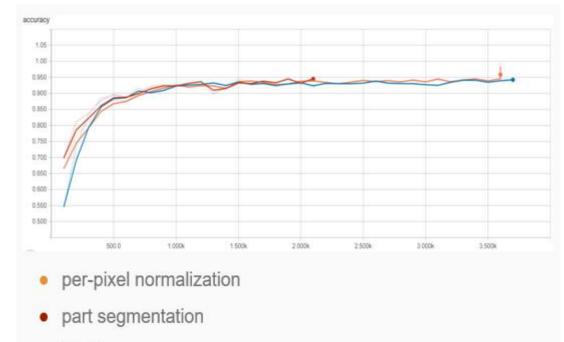


Image preprocessing result comparison



The best technique is Part Segmentation in term of:

- Accuracy = 0.9505 \bullet
- Convergence = 2.1k step



HSV

Best CNN trained

ZFNet architecture

- Early stopping
- Decay learning rate (parameter refinement)
- Part segmentation

Performance:

- Accuracy 0.9560
- Convergence 3.2k step

Performance on validation set:

Accuracy 0.9451

Less than 1% error

Conclusions

- Successfully apply CNN deep learning approach on automotive industry
- Not easy to find the best model considering: •
 - CNN architectures
 - learning techniques •
 - Image preprocess •
 - Optimization algorithms
 - Etc.
- Simulazion

Rotor \rightarrow Electromagnetic field

- 2 3 minutes
- CNN
 - Rotor \rightarrow Torque
 - 20 30 ms

on CPU Intel Core i7 4770

Future improvements

- Tensorflow library to decide whether using CPU machine o GPU for the training
- Transfer Learning
 - 2 CNN with the same configuration transferring W (weight) to each other to reduce Training Dataset
- Generative Adversarial Networks
 - Rotor \rightarrow Electromagnetic field

Scale up

modeFRONTIER

across the enterprise with the collaborative web platform

© 2019 ESTECO SpA

VOLTA

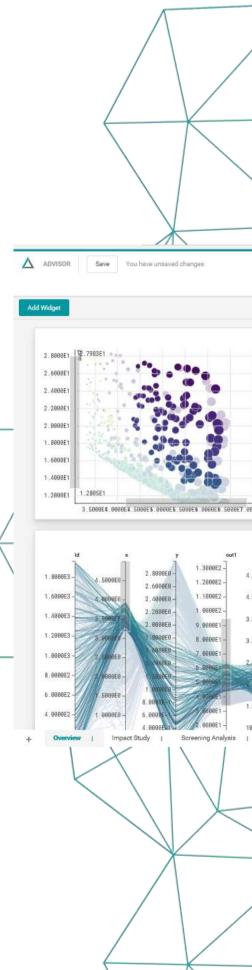
Orchestrate engineering data and run simulation projects across teams

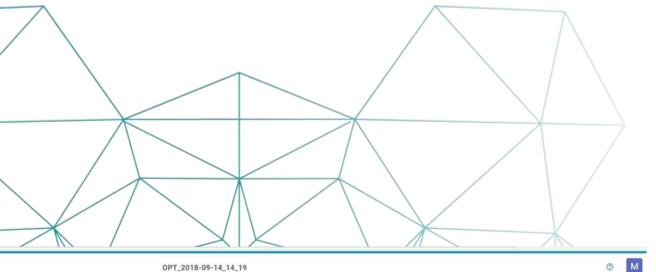
Aggregate product and process data into a single, shared repository

Quickly set-up and maintain a safe enterprise system

<u> </u>	11		
1	3	1	

Connect from any location, anytime, from computer and mobile devices





modeFRONTIER

VOLTA

Solid Foundation

Workflow Authoring Optimization and Robust Design Advanced Data Analytics Response Surfaces Modeling

Web Native

Collaboration Simulation Data Management Generative knowledge Process Execution DOE / OPT

Scalable Execution

Concurrent Execution Remote Job Management Batch Engines Balance

Success Story – MDO at Ford Motor Company

COLLABORATIVE MULTIDISCIPLINARY DESIGN OPTIMIZATION IN THE AUTOMOTIVE INDUSTRY

Ford attains streamlined, multi-user design process management by expanding its MDO approach at enterprise level with ESTECO's collaborative web-based environment.

MAY 2016 CONTENTS

01 Introduction

The Case for Collaborative Multidisciplinary Design Optimization (MDO) in the Automotive Industry

A Now Collaborative Approach to Improve Vehicle Designs

EMDO in Action at Ford

DOE and RSM-Rased Design Optimization Moch NCAPIERS Requirements

Getting Real with Direct Optimization

05 Conclusions Taking on the multifaceted challenge of vehicle engineering in a rapidly changing, globalized market, the automotive OEM adopts an innevative design strategy enabled by the new collabcrutive design optimization technology and turns engineering knowledge into a corporate acort.

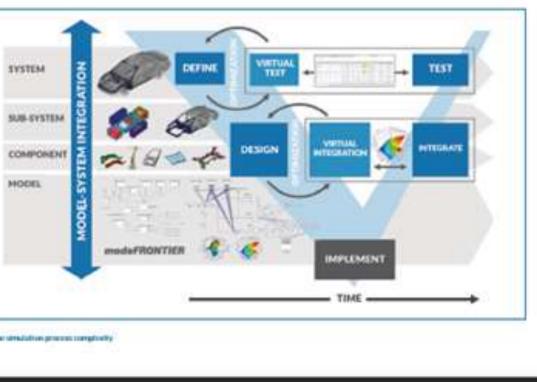
01 Introduction.

The automotive industry is facing new and pressing challenges from all sides. As the broader comony slowly recovers, automotive players are starting to see their revenues increase again and are expectof to add bradeount in the next years. Nevertheless, being able to maintain profit margins is bound to become more difficult as public policies focus more and more on meeting environmental and safety standards, adding further pressure on cost structures. In record years, the role of innovation in the automotive industry has energed as a key factor, with companies shifting their revenues from wellestablished models to new once: Original Equipment Manufacturers (CEMs) are seeking to develop alternative powertrain technologies for digital-intensive and lower-emission vehicles to counterbalance the uncertainty related to future prevailing turbrelogies; at the same time they are aiming to adapt to changing regional and segment patterns of comuner preferences. This has resulted in a trend towards shared production platforms and more modular systems. The growing number of tiers serving different vehicle segments and markets based on a single platform unprecedentedly raises the complexity of both design and production processes. Rethinking design strategies and approaches in order to anticipate manufacturing and market requirements in the carliest phases becomes crucial for OEMs to differentiate themselves with new features while extracting ceanomic value. Leading Computer-Aided Engineering (CAE) software companies such as ESTECO have been leeping pace with changes in industry and working together with companies to create technologies and solutions that not only can handle current challenges, but can also steer the industry toward more innovative product design and pro-COMPL.

02

The Case for Collaborative Multidisciplinary Design Optimization (MDO) in the Automotive Industry.

With car buyers worldwide becoming more and more demanding - asking for highly customized features, increased performance, and diversified styling despite the mass market nature of the product - the response of automotive manufacturers has been to raise the number of body styles derived from the same engineering frame. These "derivatives" have numerous common product elements not visible to the consumer (e.g., common chassis, body structures, core components) in order to make differentiation of consumer-facing features valuable. Developing an



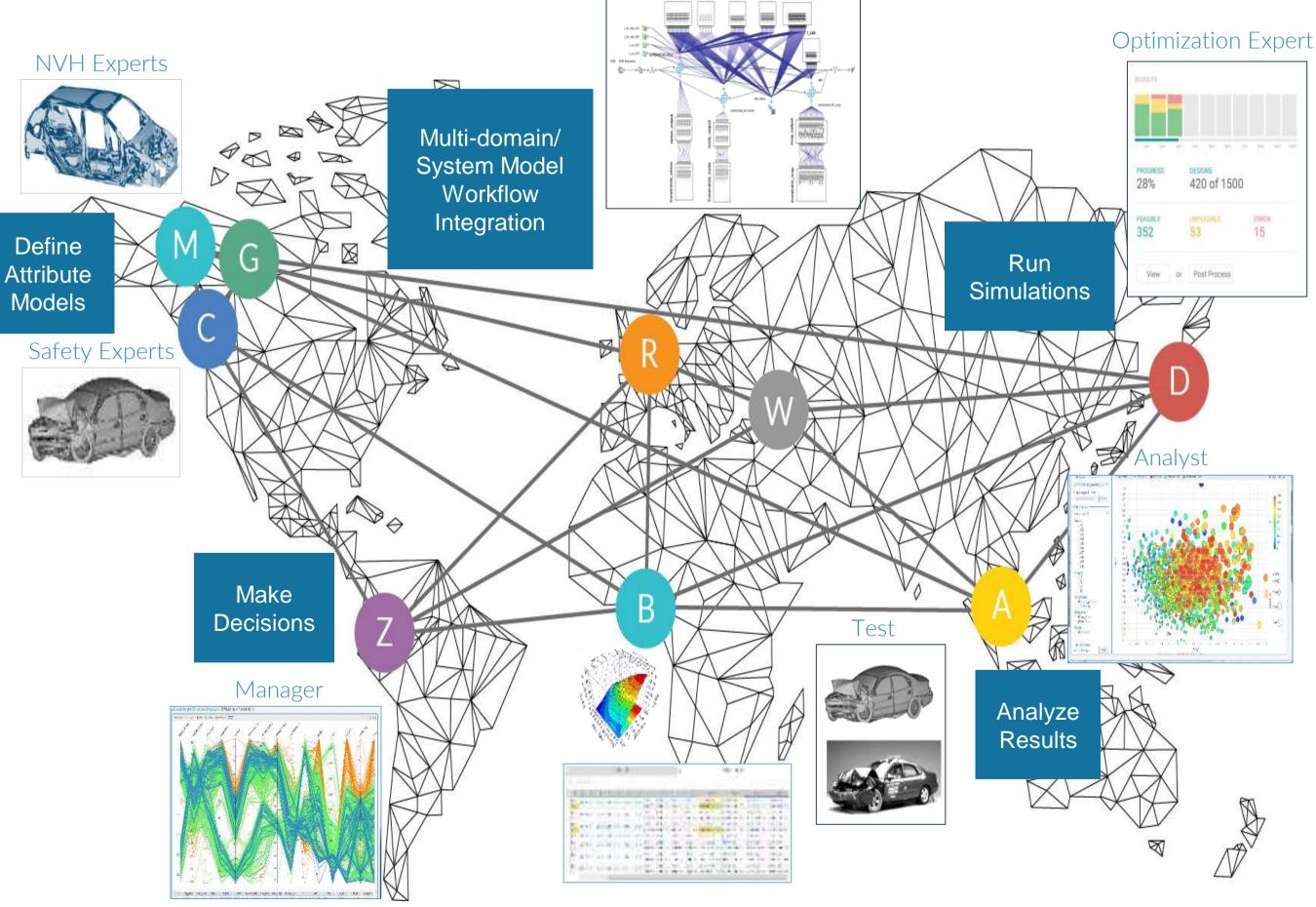
OI. The stradulities process complicatly

increasing number of derivatives per shared platform increases the complexity of managing the product development processes, given the explosion in the number of design models generated using different simulation tools and centaining large numbers of design variables, responses, objectives and constraints. Enterprise-wide Multidisciplinary Design Optimization (EMDO) will be one of the key enablers for us to make an impact on the company's global community.

Yan Fu, Technical Leader of Business Strategy and Engineering Optimization at FORD

Take for example the structure of a car frame; engineers must take into account multidisciplinary load cases such as safety, NVH (noise, vibration and harshness), stiffness, durability and acrodynamics, to name a few. Given that structural requirements to meet loads in one discipline are often impacting the requirements for others, structural performance of all disciplines should be considered simultancously. On top of the sheer complexity of design, teams are getting bigger and more often than not working in dif-

Scenario definition



MDO User

E/JE/JE ESTECO TECHNOLOGY AND THE EXPEDITE MADD CHALLENGE 07/31/2018

Clifton Davies EXPEDITE PM

Michael Mull

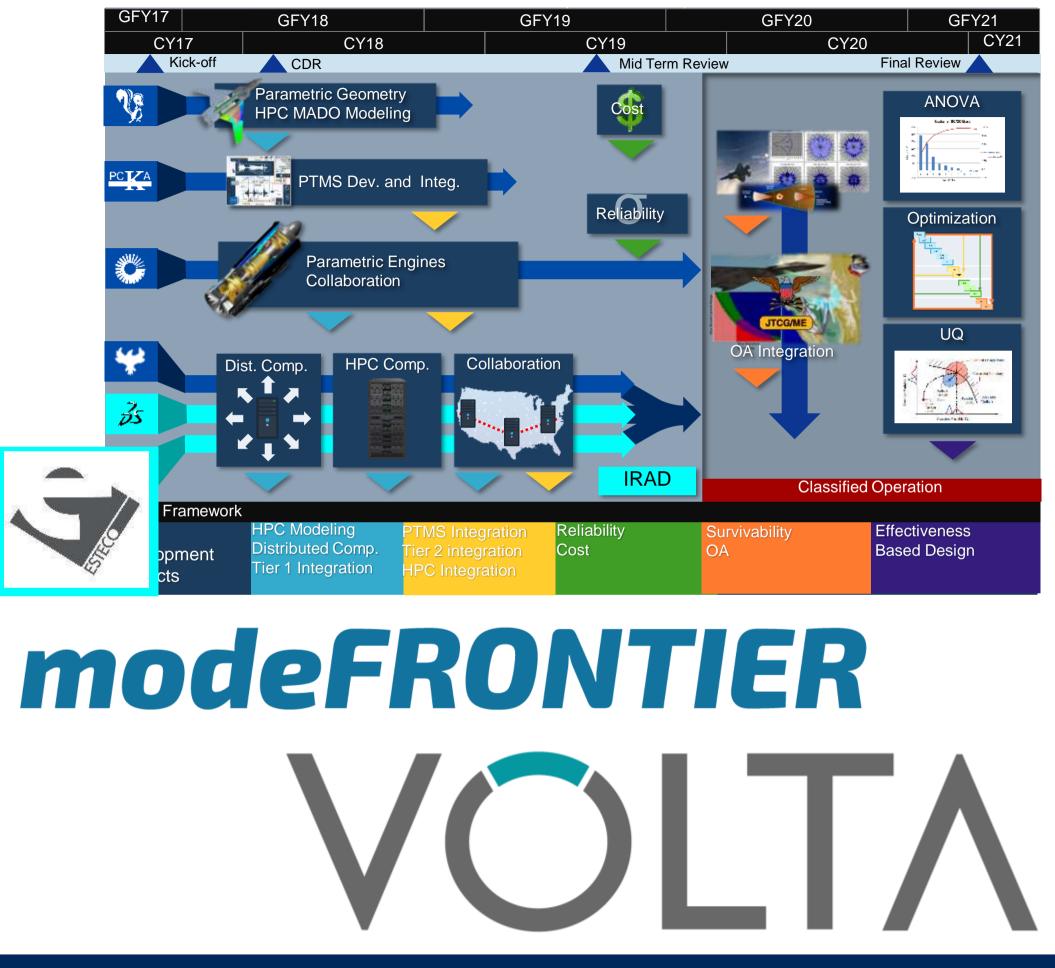
Conceptual Design Engineer

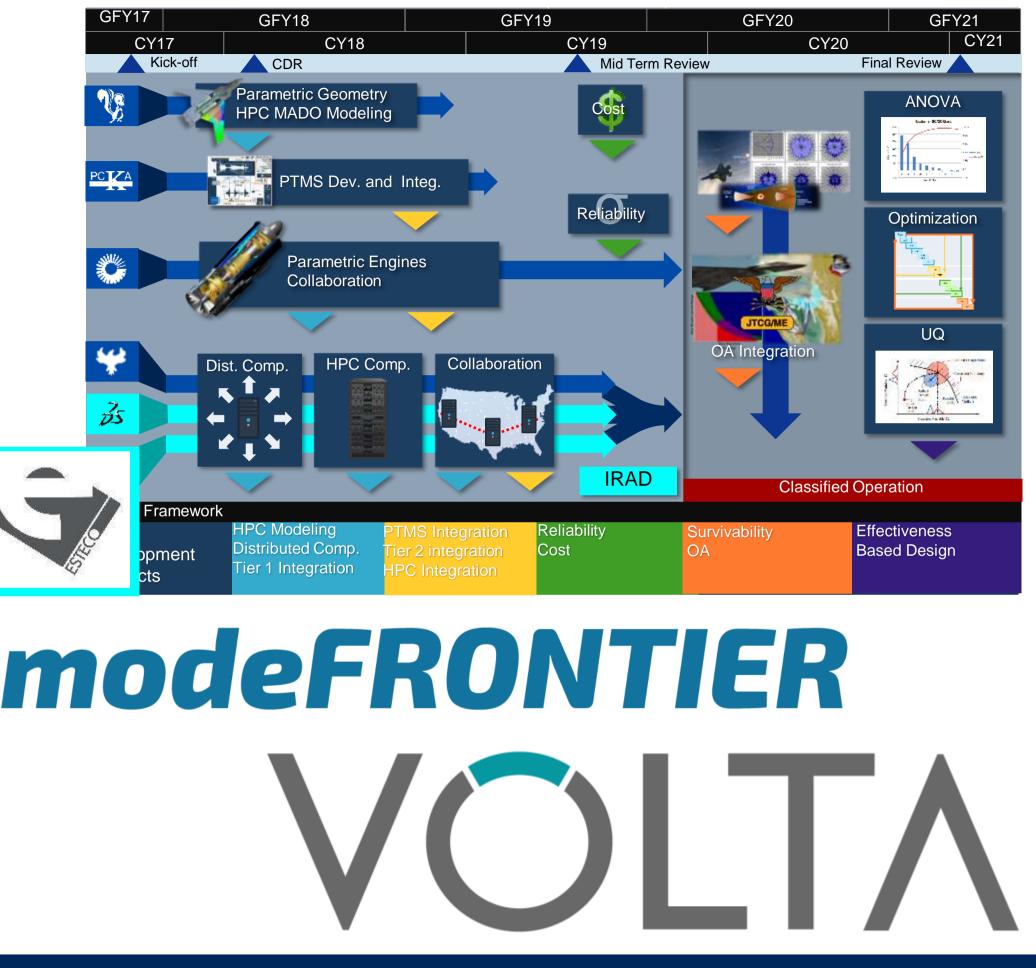
LOCKHEED MARTIN

Approved for Public Release

APPROACH TO EXPEDITE

- **Open, non-proprietary approach to program**
- **Propulsion/PTMS disciplines as target for** geographically distributed MADO
 - **P&W for propulsion partner**
 - **PCKA for subsystem modeling**
- Two phases to support EBD
 - Large open phase for model/tool development
 - **Classified end phase to enable realistic OA** operation
- Multi-vendor approach to computing challenges
 - **Distributed computing**
 - **HPC**
 - **Collaboration (Geographically Distributed)**
 - **Uncertainty Quantification**

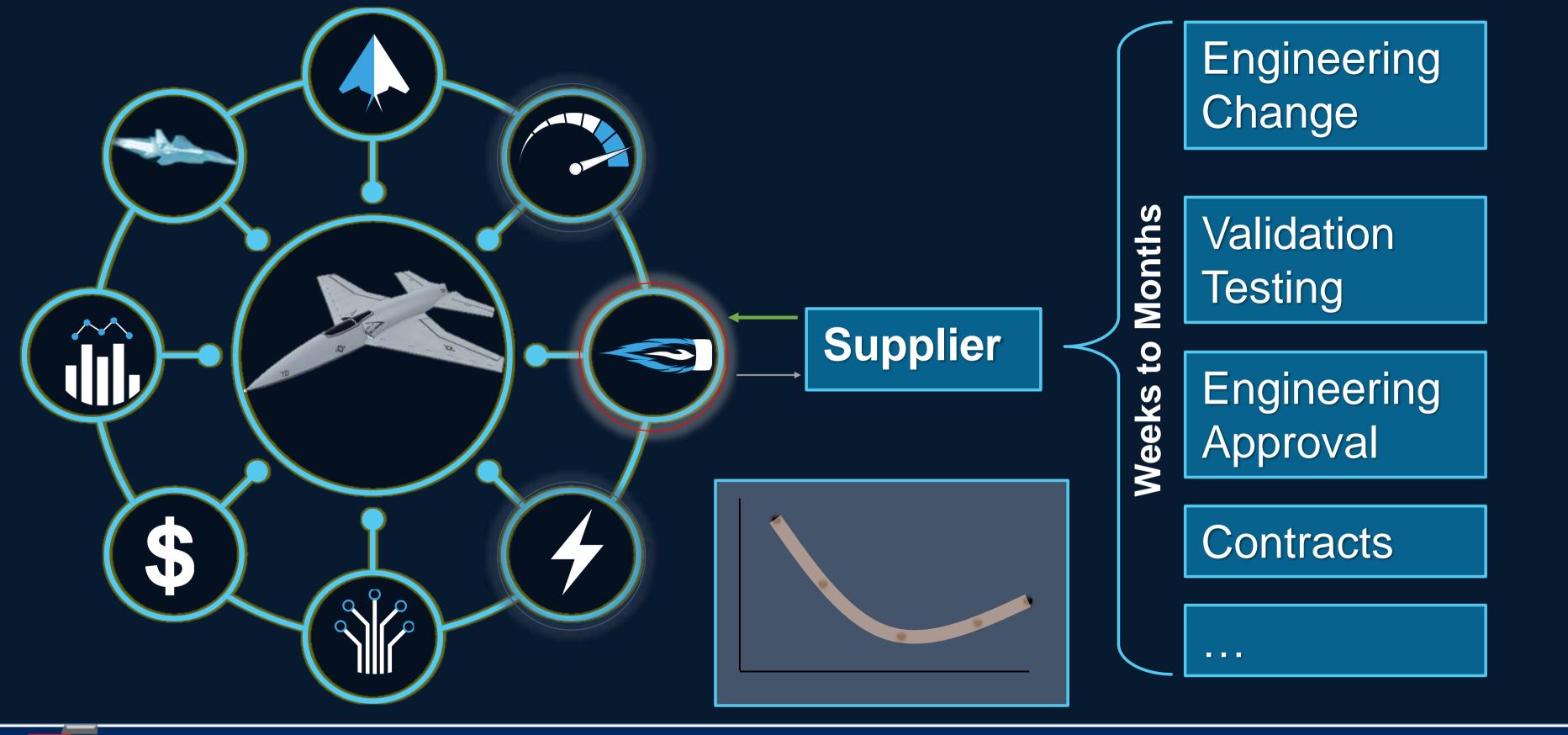




Approved for Public Release

LOCKHEED MARTIN

MADD Supplier M&S Challenge



© 2018 Lockheed Martin Corporation. All Rights Reserved COPYRIGHT 2018 LOCKHEED MARTIN CORPORATION – ALL RIGHTS RESERVED

Approved for Public Release

LOCKHEED MARTIN

Save the date

UmESTECO
INTERNATIONAL2020USERS' MEETINGTrieste, ITALY29-30 SEPT

See you in 2021

ESTECO NORTH AMERICA 2021 USERS' MEETING

Detroit area, MI

IDAJ CAE Solution Conference 2019

Thank you!

esteco.com

20th >> 21th NOV 2019 >> Shanghai, China

