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Our Products



Automate simulations 

within a single 

workflow

Embrace optimization-

driven design

Seamless integration

with engineering

solvers

Turn uncertainties into

well-performing

products

Gain better

understanding of the 

design space

Make better decisions

with data analysis and 

visualization tools



Optimization-Driven Design

Input Variables
Define design domain

Black Box
Computes outputs based 

on inputs

Output Variables
Measure the system 

response



Types of Parametric Input Variables

Discrete variables:

• Components from a catalog

• Material selection

Continuous variables:

• Point coordinates

• Process variables

• Dimensions or shape variables



Our Technical 

Partners
Seamless integration at hand

Our solutions are fully 

integrated with the 

most commonly used 

engineering tools



Combines Process Flow and Data Flow

Workflow: Process Automation

Data Flow

Process
Flow



Single-objective

Converge to only one optimal solution

Single vs. Multi-Objective

Multi-objective

There is a set of equivalent optimal 
solutions called the Pareto frontier



Aerodynamic Optimization of a 
Wide Body Train Front
Bombardier Transportation



BOMBARDIER

Reduced 20%  
aerodynamic drag and 
energy consumption by 
10%

‟ Wind tunnel tests of the shape produced by 
the modeFRONTIER optimization confirmed
that it was one of the best we had seen. Based
on this result, Bombardier Transportation now
uses modeFRONTIER to drive the analysis tools
for all our aerodynamics projects ”

DR ALEXANDER ORELLANO

Head of Aerodynamics



Reducing Energy Consumption of Bombardier Trains 

1. Create a parametric train 
model with CATIA V5 - 10 
geometric parameters

2. CFD simulation (STAR CCM+)

3. Incorporate model in 
automatic optimization loop

4. Minimize drag



Reducing Energy Consumption of Bombardier Trains 
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Courtesy of Bombardier Transportation



Wind tunnel tests confirmed optimization 
results

Benefit: optimization resulted in faster design 
process along with significant reduction in 
the use of expensive wind tunnel testing

Reducing Energy Consumption of Bombardier Trains 

Courtesy of Bombardier Transportation



Understand global correlations between geometric

parameters and CFD performances. Give inputs to 

future train design to reduce energy consumption

and maximize safety.

Introduction



Regulation constraints:
 Head Pressure Pulse (HPP) less

than 800Pa
 Crosswind Stability (CWS)

Fluidynamics performances:
 Drag

Regulations and Fluidynamics

Streamline visualization of velocity field around the 
train in crosswind



It is the Pressure Pulse caused by a 
moving train.

 Different nose shapes have
different HPP values

 For a given shape limit the HPP 
means speed limit

Head Pressure Pulse



Stability is fundamental for safety: 

lateral winds can cause the train to 

roll over leeward rail.

Crosswind Stability



Reduce drag to reduce energy
consumption.

Two different behaviors at tail: 
 flow stays attached for α>62°
 flow detaches for α<58°
 Unsteady behavior for 58°< α<62°

Drag



modeFRONTIER allows the coupling with:
• CAD software for geometry generation
• CFD software for Mesh generation and 

CFD solution
It automates the run process and 
optimization run.

modeFRONTIER Workflow

Generate Geometry

Mesh

Run CFD

Extract Results



First Uniform Latin Hypercube DOE 
is run to spot correlation between
inputs and outputs.

Most important correlations: 

 The rounder the roof the higher
the CWS

 The longer the nose the lower the 
HPP and Drag

Optimization Results



FAST multi strategy: 200 designs
evaluation. 

Algorithm finds the Pareto frontier.

Optimization Results



Best Crosswind Stability. 
20% less than production 
train

Best Drag: 7% less than
production train

Best Head Pressure Pulse
behavior.

Best Train Shapes
Comparison with Bombardier regional train



Best drag:
 Higher nose for less turbulent wake
 Drag reduction of 7% with respect to production train

Best HPP:
 Longer noses

Best CrossWind Stability:
 Sharp angles on the nose upper part
 Sloping and flat noses
 20% better stability with respect to production train

Summary



Using Deep Learning in electric 
motor optimization
Esteco & University of Trieste



Corso di laurea in Ingegneria Elettronica e Informatica

Applicazione di reti neurali nella progettazione 

di componenti per l’industria automobilistica

Tesi di laurea magistrale

Laureando:

Mattia De Bernardi

Relatore:

Prof. Gianni Ramponi

Correlatore:

Ing. Livio Tenze



Electric motor optimization for NEVs development 

Interior Permanent Magnet (IPM) Motor 



Electric motor optimization for NEVs development 

Optimization of an Interior Permanent Magnet (IPM) Motor

Challenge:

• Huge number of geometry configurations to explore

• Heavy computational simulations

Solutions:

• Deep Learning approach using convolutional neural network (CNN) to analyze image and reduce 
simulations

• modeFRONTIER optimization platform to reach the optimal



Ford’s Yan Fu publicly 
mentions SOMO for 
the first time during 
ESTECO UM14 in 
Trieste, Italy.

How Does The Human Eye Work?



Ford’s Yan Fu publicly 
mentions SOMO for 
the first time during 
ESTECO UM14 in 
Trieste, Italy.



Problem descriptions

The steps are:

1. Select a geometry

2. Simulation using JMAG

3. Electromagnetic field

4. Power band

5. Average torque  

The objectives are:

• Maximize the torque

• Minimize the geometry



Rotor parametrization



Classification based on Torque value



Deep Learning approach

Torque [Nm]

Geometry Electromagnetic field

Convolutional neural network

Simulation



Deep Learning approach

Torque [Nm]

Geometry Electromagnetic field

Convolutional neural network

Simulation



Convolutional Neural Network

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take 
in an input image, assign importance (learnable weights and biases) to various aspects/objects in 
the image and be able to differentiate one from the other. 



How Does The CNN works

CNN goal is approximate an unknown function f* with another function

y=f(x;W)

Neural Network optimize the weight W to minimize the loss function L and 

obtain the best approximation of the function f*

W = W - ϵ g

ϵ is the learning rate

g loss function gradient respect to W



CNN general architecture 

Fully connected layer Convolutional layer



CNN general architecture 

Convolutional neural network has different type of layer:

• Convolutional

• Fully connected

• Pooling

• Normalization



Different architecture and techniques

Various architectures of CNNs available:

1. LeNet

2. AlexNet

3. VGGNet

4. GoogLeNet

5. ResNet

6. ZFNet

Learning techniques to improve performance:

1. Decay learning rate

2. Early stopping

3. Data augmentation



Learning Process



Learning Dataset



Learning Dataset



Image preprocessing

Image preprocessing improve CNN accuracy and speed up loss function convergence

Different image preprocessing are used:

1. Image centering e normalization

2. Color segmentation

3. Part segmentation

The 1st is a general technique for image processing while the other two are specific techniques 
for electric motor 



Color Segmentation



Part Segmentation 



The best technique is Part Segmentation in term of:

• Accuracy = 0.9505
• Convergence = 2.1k step

Image preprocessing result comparison



Best CNN trained

ZFNet architecture

• Early stopping

• Decay learning rate (parameter refinement)

• Part segmentation

Performance:

● Accuracy 0.9560

● Convergence 3.2k step

Performance on validation set:

• Accuracy 0.9451

Less than 1% error



Conclusions

• Successfully apply CNN deep learning approach on automotive industry

• Not easy to find the best model considering:
• CNN architectures

• learning techniques

• Image preprocess

• Optimization algorithms
• Etc.

• Simulazion
Rotor → Electromagnetic field

• 2 - 3 minutes

• CNN
Rotor → Torque

• 20 - 30 ms 

on CPU Intel Core i7 4770



Future improvements

• Tensorflow library to decide whether using CPU machine o GPU for the training

• Transfer Learning 
• 2 CNN with the same configuration transferring W (weight) to each other to reduce Training Dataset 

• Generative Adversarial Networks
• Rotor → Electromagnetic field



© 2019 ESTECO SpA

Scale up

across the enterprise with the collaborative web platform



Orchestrate 

engineering data and 

run simulation

projects across teams

Aggregate product and 

process data into a 

single, shared

repository

Quickly set-up and 

maintain a safe

enterprise system

Connect from any

location, anytime, from 

computer and mobile 

devices



Solid Foundation

Workflow Authoring
Optimization and Robust Design

Advanced Data Analytics
Response Surfaces Modeling

Web Native

Collaboration
Simulation Data Management

Generative knowledge
Process Execution

DOE / OPT

D i s t r i b u t e d  E x e c u t i o n

Scalable Execution

Concurrent Execution
Remote Job Management

Batch Engines Balance



Success Story –MDO at Ford Motor Company



Scenario definition

Multi-domain/

System Model 

Workflow 

Integration
Define 

Attribute

Models

Run

Simulations

Analyze 

Results

Make 

Decisions

NVH Experts

Safety Experts

MDO User

Optimization Expert

Manager

Test

Analyst
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07/31/2018

Clifton Davies Michael Mull

EXPEDITE PM Conceptual Design Engineer

ESTECO TECHNOLOGY AND THE

EXPEDITE MADO CHALLENGE
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APPROACH TO EXPEDITE
• Open, non-proprietary approach to program

• Propulsion/PTMS disciplines as target for 
geographically distributed MADO

• P&W for propulsion partner

• PCKA for subsystem modeling

• Two phases to support EBD

• Large open phase for model/tool 
development

• Classified end phase to enable realistic OA 
operation

• Multi-vendor approach to computing challenges

• Distributed computing

• HPC

• Collaboration (Geographically Distributed)

• Uncertainty Quantification

56

Agile 

Development 

Products

HPC Modeling

Distributed Comp.

Tier 1 Integration

PTMS Integration

Tier 2 integration

HPC Integration

Reliability

Cost
Survivability

OA

Effectiveness

Based Design

2018 2019 2020GFY18 GFY19 GFY20 GFY21

CY17 CY18 CY19 CY20
Kick-off CDR Mid Term Review Final Review

OA Integration
Dist. Comp.

Parametric Engines

Collaboration

Cost

Classified Operation

σReliability

Parametric Geometry

HPC MADO Modeling

HPC Comp.

MADO Framework

PTMS Dev. and  Integ.

GFY17

CY21

Collaboration

ANOVA

Optimization

UQ

IRAD
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MADO Supplier M&S Challenge

Supplier

Engineering

Change

Validation 

Testing

Engineering 

Approval

Contracts

…
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Save the date



See you in 2021



esteco.com
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>> Shanghai, China

Thank you!
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