

Battery Pack Design with Immersive Cooling using GT-SUITE and GT-Converge

January 23-24, 2023

Tarun Dharmvirsingh, Gaurav Rajendra

Jérémy Blandin, Marc Baronnier, Dr. Vignaesh Subramaniam, Pawel Tokarski

SMART TECHNOLOGY FOR SMARTER MOBILITY

Table of contents

Introduction : Battery Thermal Management System

Simulation Methodology with GT-Suite and GT-Converge

(1)

(2)

Synthesis / Results

16

10

4

Valeo : automotive supplier and partner to automakers worldwide

Ð

Valeo

Introduction : Thermal Systems for EV functions

- ➔ Energy Efficiency for optimium vehicle range
- Thermal loops interaction for better energy recovery
- ➔ Modular solutions for easier diversity management

Introduction : Battery Thermal management Market Drivers

Standarization, modular design for HEV/PHEV/EV

Introduction : Battery trends & impact on Thermal management

Battery Heat rejection & Thermal needs for BTM at cell level depends on:

- Chemistry Cathode composition (LFP, NMC, NCA)
- Electrolyte liquid / hybrid / SS (solid-state)
- Physical design of the cell: dimensions anode cathode (thickness,...)
- Charging Kinitics (Fast Charge / Ultra Fast Charge)

Battery C-rate = Power / Energy = Current / Capacity = A /Ah [h ⁻¹]

 \rightarrow \rightarrow 4C means $\frac{1}{4}$ hour charging time for 100%

Relationship between Heat rejection and C-rate

Heat rejection = Resistance x Current² \rightarrow 4C charge heats 4x more than 2C !

Battery Cooling Methods

Immersive Cooling solution evaluated

Thermal Runaway Causes and Effects

02

Simulation Methodology with GT-Suite and GT-Converge

Simulation Objective

Evaluated a design of immersion cooling during thermal runaway Sensitivity study on several parameters

- Gap between cells
- Fluid characteristics
- Fluid flow rate

Pack example

CFD Model on GT- Converge

Target is to get the convective heat transfer coefficient h. For each fluid, 3 flow rate computed 150 / 300 / 500 l/h

GT file to get Area, Heat Rejection and Wall Temperature

.0070145e+0

3.0070118e+0;

3.0070045e+0

3.00700040+0

00500570+0

3.0059921e+03

0059879840

3,0069795e+0

3.0069711e+0

3,00595588+03

.0059526e+0

3.0069583e+0

3,00695410+0

3.0069498e+0

3 0050455640

3.00694120+0

3.0069370#+0

3.0069327e+02

3,0059284e+0

3,0069241e+02

2.9394757e+02

2.9394752e+02

2.93947490482

2.9394747e+02

2.9394744+02

2.9394741ex82

2,9394736e+02

2.9394730e+02

2,93947270+02

2.9394722e+02

2.9394719e+02 2.9394717e+02

2.9394711e+02

2.9394788++02

2.9394706e+02

2,9394783e+82

2,9394700+02

2.9394725e+02

ParaView to get Fluid Temperature

Model GT-Converge

	Nusselt					
	Fluid 1	Fluid 2	Fluid 3	Fluid 4	Fluid 5	Fluid 6
500 l/h	5,4	6,9	6,2	6,2	5,3	6,7
300 l/h	4,6	6,0	5,6	5,6	5,1	5,7
150 l/h	4,1	5,3	5,3	5,3	4,6	4,8

From 3D to 1D

Why going to 1D :

- Lower computational cost, allowing parameter studies and DOEs
- Can be integrated in a system simulation with rest of vehicle
- Boundary conditions are easily changed

Only the fluid part is converted to 1D (with 1D Navier-Stokes), the thermal part remains 3D FE.

And the convective heat transfer coefficient comes from the CFD.

 \Rightarrow The 1D-3D approach allows the best balance between accuracy, flexibility and computational cost

1D Model in GT : thermal runaway propagation

GT model is operational :

- 1D Navier Stokes on fluid with h coming from CFD
- Full 3D FE for thermal elements

Target is to put one cell (cell 6 in the middle) in thermal runaway (by imposing heat rejection) and check what is the temperature of neighbouring cell \Rightarrow do we have propagation or not ?

What if we change flow rate ? Change fluid ? Change gap between cells ?

Thermal Runaway on 1 Cell

We imposed heat rejection of the cell undergoing thermal runaway, so we need to know how much that is.

Calorimetric test is the answer.

Thermal Runaway Example

Thermal runaway started when surface cell temperature reached 180°C

Heat rejection of the cell can be extracted from the temperature as function of time

Results on cell 6

Cell 6 is the one undergoing thermal runaway. Checking that the model is working.

Material is anisotropic so each face has different temperature. Average cell temperature is +250°C with hot spots at +800°C versus reference temperature Total energy released is ~900 kJ

First Results - Reference simulation

- Gap 2 mm
- Flow rate 500 l/h
- Fluid 1
- Cell 6 goes in TR (with heat rejection imposed) at t=200s
- h coefficient based on CFD

Maximum temperature is +195°C on the corners Large face average is +54°C and side face average is +80°C

Results for cell 7.

closest cell :

Results - impact of flow rate and gap

Sensitivity study on flow rate and geometry :

- Fluid 1 •
- Gap 1/2 mm
- Flow rate 150 / 500 l/h

		FLOW			
		150 l/h		500 l/h	
۹P	1 mm		80		76
6	2 mm		83		80

Max Relative

Temperature

EL OW
Temperature
Avg Side Face Relative

		FLOW		
		150 l/h	500 l/h	
AΡ	1 mm	7.	5	55
ອ	2 mm	6	4	54

Ауу сагуе га	ce Relative
Temper	ature
	ELOW/

		FLOW			
		150 l/h	500 l/h		
٩P	1 mm	193	187		
Ū	2 mm	199	195		

Higher flow rate improves all temperatures, especially the large face temperature. Larger gap improves a lot the large face temperature at low flow but has almost no impact at high flow with small negative impact on maximum temperature and side face temperature.

Results - impact of fluid

6 different fluids to compare

- 2 mm gap
- 500 l/h

Part Important ThemProton of pr O'		Part Terrentian Terrentian per ch		Part Temperatures (2]
	- for 1 - for 1 - for 0 - fo - fo - fo - fo - fo - fo - fo - fo				Part 1 Part 2 Part 3 Part 6 Part 6
50 130 190 230 230 300 50 40 40 50 50 100 100 100 100 100 100 100 100	600 650 700	50 100 100 200 20 300 500 400 400 500 500 600 70 Teer Ial		50 500 102 202 200 300 500 600 600 500 500 600 600 T	00
Fluid4 :		Fluid 5 :		Fluid 6 :	
Fluid4 :		Fluid 5 :			-
Fluid4 :		Fluid 5 :	- Fat 1 - Fat 2 - Fat 1 - Fat 1 - Fat 2 - Fat	Fluid 6 :	

Eluid 2 ·

	Max Rel. T	Large Face Rel. T	Side Face Rel. T
Fluid 1	195	54	80
Fluid 2	192	52	78
Fluid 3	193	52	79
Fluid 4	193	53	79
Fluid 5	195	53	80
Fluid 6	192	55	79

Very small impact of fluid on heat transfer

Eluid 1 ·

Can be explain by negligible h difference compared to the huge energy release

VALEO RESERVED

Eluid Z ·

Next step and perspective

Improvement of model accuracy :

- Refine cell model by adding tab and aluminium casing.
- Replace imposed heat rejection with a complete chemical model using AutoLion

Main limitations of model :

- Venting of cell is ignored
- Fluid stayed liquid : no boiling, no burning

Further studies :

- Different routings of fluid
- Replacing immersion cooling by spray cooling

Thanks for your attention

Contact :

tarun.dharmvirsingh@valeo.com

gaurav-rajendra.raghuttamrao@valeo.com

VALEO RESERVED

SMART TECHNOLOGY FOR SMARTER CARS